
Real-time Ethernet Residual Bus Simulation:
A Model-Based Testing Approach for the Next-Generation

In-Car Network

Florian Bartols, Till Steinbach, Franz Korf, Bettina Buth, Thomas C. Schmidt
HAW-Hamburg, Department Informatik

Berliner Tor 7, D-20099 Hamburg, Germany
{florian.bartols, till.steinbach, korf, buth, schmidt}@informatik.haw-hamburg.de

ABSTRACT
The increasing complexity of automotive networks, their
challenging timing constraints and their high bandwidth de-
mands require new concepts for future in-car communica-
tion. Real-time Ethernet is meant to be a suitable candi-
date for the next-generation in-car interconnection. How-
ever, model-based testing capabilities must be available as
well. Applications must be validated prior the first assem-
bly, due to the distributed development process. Methods
like residual bus simulation are of particular interest to allow
for testing systems in early development stages by emulating
unfinished or not available parts of the system.

In this paper, we present a methodology and a feasibility
study of a residual bus simulation in automotive real-time
Ethernet systems. The challenges of applying this testing
method in real-time Ethernet based networks with paral-
lel packet transmission are outlined and compared to to-
day’s automotive bus system simulation approaches. Fur-
thermore, the combination of different model-based testing
techniques, that are not used in state-of-the-art commercial
tools, are applied for the validation of non-functional tim-
ing requirements. An extension to an existing abstract test
case model is proposed, which allows modelling temporal
attributes. It is simultaneously used as simulation model
to drive the residual bus simulation. We demonstrate the
approach’s feasibility by implementing a prototype residual
bus simulator for real-time Ethernet networks and applying
it to an example application.

Categories and Subject Descriptors
B.4.5 [Input/Output and Data Communications]: Re-
liability and Fault Tolerance; D.2.5 [Software Engineer-
ing]: Testing and Debugging

General Terms
Design, Verification, Experimentation

RTNS ’2014 , October 08 - 10 2014, Versailles, France
.

Keywords
Real-time Ethernet, TTEthernet, Residual Bus Simulation,
Model-Based Testing, Validation, Modeling, UML-MARTE

1. INTRODUCTION
Today’s cars are complex, mixed critical [20], distributed

systems with more than 70 electronic control units (ECUs).
These units are responsible for information and entertain-
ment systems, e. g. radio and navigation or safety critical
functions, such as emergency breaking or airbag systems.

The requirements for these systems include aspects such
as bandwidth, reliable data transmission and real-time be-
havior in different combinations. While safety critical func-
tions have high demands on real-time characteristics, enter-
tainment components require high bandwidth capabilities.
Due to these different requirements, the in-car network in-
frastructure became heavily heterogeneous in the past. For
each kind of application class, a dedicated network system
for on-board communication has been utilized. As a conse-
quence, the topology has become more and more complex
and the distributed applications are hardly manageable and
maintainable nowadays.

Next-generation driver assistance functions relying e. g.
on cameras and radar systems will increase the challenges
of future in-car networks. These applications both have
high real-time and bandwidth demands, since multiple data
streams need to be merged and processed in real-time. State-
of-the-art automotive bus networks like CAN [7] or FlexRay
[5] already operate on their bandwidth limits or cannot ful-
fill the required rigid real-time requirements (MOST [9]) for
safety critical applications. A possible solution for these
challenges is the application of Ethernet-based networks for
in-car communication [19]. Real-time Ethernet (RT Ether-
net) is a suitable candidate for next-generation automotive
on-board communication to overcome the issues imposed by
new driver assistance functions. It provides reliable real-
time data transmission while supplying sufficient bandwidth.
Furthermore, the complexity of the network infrastructure
can be reduced. This enables the integration of additional
applications with reduced effort.

The utilization of software controlled automotive appli-
cations is rapidly increasing. It is the key driver for new
innovations in the automotive industry. Features imple-
mented in software increased in the last years from 20 %
to 80 %. Forecasts claim that in this decade 90 % of auto-
motive functions will be realized using software [2]. This fact
directly influences the costs during the development process
of a new in-car application. To minimize these costs, the



application has to be tested in early development stages.
The later faults surface, the more expensive is the resolu-
tion. The distribution of functions over several ECUs and
the distributed development process in the automotive in-
dustry [14] makes this goal even more difficult. In gen-
eral, the Original-Equipment-Manufacturer (OEM) defines
the application and its requirements along with its features
in specifications and models, while external suppliers pro-
vide the implementation. Therefore, the suppliers have to
test their developed subsystem prior to the first system inte-
gration. Unavailable or unfinished nodes that are essential
for the application can make testing in the original opera-
tion environment impossible. Instead, testing frameworks
such as residual bus simulations are applied by the suppli-
ers. A residual bus simulator emulates the missing nodes
and their behavior inside the distributed application to en-
able the testing procedure.

In this paper a methodology and a feasibility study for
residual bus simulation of RT Ethernet components is pre-
sented, that is used to validate functional and non-functional
timing requirements in distributed automotive applications.
By applying a residual bus simulation for RT Ethernet based
applications, we demonstrate the feasibility of our presented
approach. It is successfully utilized to validate functional
and non-functional requirements of an example application
in a prototype next-generation in-car network.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces background information for the RT Eth-
ernet residual bus simulation and presents related work. In
Section 3 challenges of a real-time Ethernet based residual
bus simulation and the differences to common automotive
bus based residual bus simulations are described. Section
4 presents graphical methods to model non-functional tim-
ing requirements in distributed applications and furthermore
introduces an abstract test-case model to validate the mod-
eled requirements. The application of the proposed residual
bus simulation approach is presented in Section 5. Finally,
Section 6 concludes and gives an outlook on future work.

2. BACKGROUND & RELATED WORK
Residual bus simulation is the state of the art proce-

dure to test distributed automotive systems in early devel-
opment stages. It belongs to the model-based testing (MBT)
methodology [15], where test cases are strictly inherited from
models and executed in different development stages. In this
section an overview of the utilized modeling language and an
example of a generic residual bus simulation is given. Fur-
thermore, TTEthernet, as an implementation of real-time
Ethernet used in this paper, is presented.

2.1 Real-time Ethernet for Automotive
Applications

The current in-car network architecture is a complex and
inhomogeneous system with many different network proto-
cols and systems. While the continuous increase of band-
width consumption and number of transmitted messages will
soon push today’s infrastructure to its limits, new concepts
for interconnecting nodes need to be investigated. New ap-
plications that rely on the current in-car network became
difficult to implement, since its complexity is hardly man-
ageable and maintainable [18].

Real-time Ethernet protocols like Time-Triggered Ether-
net or IEEE AVB Ethernet can pave the path for new au-

tomotive applications, since it provides real-time character-
istics and high bandwidth availability [19]. In this work,
Time-Triggered Ethernet (TTEthernet) [16] is utilized as RT
Ethernet protocol. It was developed by TTTech in coopera-
tion with Honeywell as a fault-tolerant network protocol for
safety-critical applications. TTEthernet allows for trans-
mitting time-critical and non-critical messages on the same
physical infrastructure, by defining three different message
classes with different transmission characteristics:
Time-Triggered (TT) messages have the highest trans-
mission priority and provide the strictest timing guarantees
with low jitter. The transmission is accomplished in time-
triggered manner on each participant and is used for peri-
odically transmitted real-time data.
Rate-Constrained (RC) messages are transmitted in a
bandwidth limiting manner and conform to the ARINC-
664 (AFDX) [1] protocol specification. In contrast to TT-
messages, RC-messages are used for asynchronous event-
based critical messages with less rigid timing demands.
Best-Effort (BE) messages have the lowest priority and
use the remaining bandwidth. This class is applied for best-
effort communication without transmission guarantee.

Both, TT- and RC-messages are transmitted on stati-
cally configured network routes, by using the principle of
virtual links (Vlinks). A Vlink represents a virtual net-
work path from one sender to many receivers, which allows
for designing static group communication. In order to en-
able transmission of TT-messages with low latency varia-
tion, TTEthernet provides a transparent fault tolerant clock
synchronization protocol to establish a globally synchronized
time base on each network participant. For synchronization,
TTEthernet defines dedicated roles for each end system. In
a first step, synchronization masters (SM) initialize the syn-
chronization process by transferring a special synchroniza-
tion message containing their local time. These messages are
received by a compression master (CM) which calculates an
overall average of all time bases. In the second step, it sends
a synchronization message containing the average time base
back to the SMs and all remaining participants (synchroniza-
tion clients (SC)). Afterwards, all nodes synchronize their
local clock to the calculated common time base.

2.2 Residual Bus Simulation in the Context of
Model-Based Testing

Current in-car applications are complex systems consist-
ing of discrete and continuous subsystems, that interact
which each other. To handle the system complexity during
the development, suitable models are utilized in the automo-
tive industry. The application, its components and behav-
ior, and the requirements are designed as related models. To
model functional and non-functional requirements in generic
real-time and embedded systems, the profile Modeling and
Analysis for Real-time and Embedded Systems (MARTE)
[11] of the Unified Modeling Language (UML) [12] was de-
veloped. In contrast to the classic UML 2.0 specification,
MARTE provides a more precise clock model and allows
modeling timing requirements by using annotations in mod-
els. In our case, we use the MARTE-profile to model non-
functional timing requirements in the communication be-
tween endsystems in real-time Ethernet systems.

Model-based testing is part of the model-based develop-
ment methodology to validate the behavior of the developed
system and is mainly applied for black box testing purposes.



Front
suspension

Rear
suspension

Speedometer

Engine

Brakes

Chassis

In-car 
network

(a) System executing a speed-dependent suspension control

Residual Bus Simulation

Chassis

(b) The residual bus simulation to validate the chassis controller

Figure 1: In-car network of the adaptive chassis system in comparison with the corresponding residual bus simulation

The idea of MBT is to simplify the complex task of generat-
ing test cases by systematically deriving them from models
[23, 21]. In general, the generation can be classified in on-
line or offline approaches. Online generated test cases are
created during runtime and can be used to test the reac-
tive behavior. In contrast, offline generated test cases are
created before the actual execution and can be repeatedly
executed with the same parameters. The models can either
depict the complete developed system or a simplified ab-
stract part which represents the system aspect to be tested.
The systematically generated test cases allow for a better
reusability, since the execution is defined for different test-
ing platforms (i. e. Model-in-the-Loop (MiL), Software-in-
the-Loop (SiL), Processor-in-Loop (PiL), Hardware-in-the-
Loop (HiL)), in order to validate the behavior in different
development stages.

The residual bus simulation methodology is an approach
to test distributed systems and can be categorized as an
additional testing platform in the MBT context. In con-
trast to a pure software simulation, a residual bus simula-
tion does not virtually simulate a complete system. During
a residual bus simulation, simulated and physical systems
are running side-by-side in the same environment. Only the
missing nodes and their behaviors are simulated, while the
physically available components of the system are tested.

Still, principles of software simulation need to be utilized
to drive the actual residual bus simulator. In general, the
physical system is represented as a simulation model, which
is executed on a simulator. A residual bus simulator has
to process data in real-time, since it must pretend to be
a physical system. Therefore, the calculation of the simula-
tion state is accomplished in a discrete time-based approach.
In general, discrete simulations utilize an event list, which
contains an event-actionpoint pair. The simulation time in
discrete time-based simulations relies on a dedicated clock
which constantly increments. Events are only executed, if
the simulation time equals to the action-point of the event,
as long as the event list is not empty. In contrast, discrete
event-based simulations do not rely on a dedicated clock.
They will immediately execute the next event and set the
simulation time to the action-point of the execution. In gen-
eral, discrete event-based simulations have a higher simula-
tion throughput, since events can be immediately executed,
however, the execution of events with high temporal preci-
sion has more priority than high simulation throughput. If

events are executed too fast or too slow, the simulated envi-
ronment does not conform to the physical system and thus,
the system-under-test (SUT) cannot be properly tested with
regard to its timing behavior.

The following small example will explain the application
of a residual bus simulation in an automotive environment.
Figure 1a presents an automotive network implementing an
adaptive chassis system. It controls the front and rear sus-
pension depending on the current velocity and acceleration
to keep the car in balance. The chassis ECU collects the
speed and suspension data and processes new suspension
settings, which are applied by the suspension actuators af-
terwards. In addition to the speedometer and suspensions,
the engine and brakes are connected to the same network
but do not interact with the chassis control.

Figure 1b presents the application of the corresponding
residual bus simulation to validate the behavior of the chas-
sis controller during the development. In this example, the
chassis controller is treated as system-under-test (SUT) while
the simulator has to emulate the behavior of the suspension
and the speedometer. The residual bus simulation does not
contain the engine and brakes. In early development stages,
nodes that do not interact with the SUT are not simulated
in order to reduce the simulation complexity and simplify
debugging characteristics. Since the SUT is connected to
the simulator via the physical network interface, the sim-
ulator has to generate emulated data frames to pretend a
physical system. Furthermore, the simulator has to com-
pletely support the utilized network technology. I. e. in
time-triggered systems, messages are to be generated cor-
responding to the network configuration (e. g. schedule).
Thus, the residual bus simulation configuration is separated
in static and dynamic attributes. Static attributes describe
the configuration of the network interface, while dynamic
attributes are used to describe simulation behavior, which
is modeled within the simulation model.

2.3 Related Work
The application of residual bus simulation to validate de-

veloped systems in early development stages is a typical use
case in the model-based development strategy of automotive
systems. Commercially developed residual bus simulators
support the state-of-the-art automotive bus network tech-
nologies, but currently none of these support RT Ethernet
as network system for control data. Mainly all simulators
have the same test setup topology in common [22, 4], which



is based on two different components. A standard worksta-
tion generates the static and dynamic configuration and is
used for the analysis of the performed test case. The resid-
ual bus simulator platform executes the simulation model in
real-time and generates emulated network packages. This
established setup will be used in our implementation of a
residual bus simulation environment for RT Ethernet net-
works as well. It provides adequate simulation capabilities
while the analysis does not influence the simulation.

In previous work, an implementation that interconnects
the event-based simulation platform OMNet++ [13] with
RT Ethernet networks was presented in [8]. This platform
can be used to analyze RT Ethernet network protocol imple-
mentations in the OMNeT++ simulation environment. It
relies on an architecture with two different hardware plat-
forms. A microcontroller executes a RT Ethernet stack,
which is responsible for the protocol conform reception and
transmission of messages from and to the real network. The
associated simulation model of the same RT Ethernet pro-
tocol runs on a standard workstation inside the OMNeT++
simulation environment. Both components are intercon-
nected via dual-port memory to exchange data in both di-
rections. A software implementation of TTEthernet for the
microcontroller [10] was used as well as a TTEthernet sim-
ulation model [17] for OMNeT++. In order to send and
receive time-triggered messages from the simulation to the
real world and vice versa, the simulation environment was
synchronized with the real network, by accessing the highly
precise clock of the microcontroller. The residual bus simu-
lator architecture presented in this paper uses the same ar-
chitecture with two dedicated hardware platforms. A work-
station runs the simulation environment and generates the
packages to be transmitted. The microcontroller is used
to send the packages in conformance with their transmis-
sion strategy (TT, RC or BE). In contrast to the previ-
ous work, the simulation environment does not build on
OMNeT++. The residual bus simulation is utilized for vali-
dation, such that the simulator is responsible for generating
emulated network frames instead of simulating attributes of
a RT Ethernet protocol. Therefore, the environment imple-
ments a discrete time-based simulation approach, in order
to generate emulated frames at the desired point-in-time.

In order to formally describe test cases for functional re-
quirements, Skruch et al. have presented an abstract test
case model [15]. The basic idea of abstract test cases is to
utilize a model that is independent of the actual test en-
vironment so that the same test case can be executed on
different test platforms. Their presented abstract test case
model bases on the state space model, which allows to for-
mally model the inputs and outputs, and the internal states
as vectors of a SUT (see Section 4.3). An abstract test case
defines the data of the inputs to be generated and the ex-
pected outputs, and the internal states of the SUT in depen-
dency of the time. This approach was successfully utilized
to validate functional requirements of an automotive control
unit with a CAN interface, which conforms to a residual bus
simulation. The same abstract test cases model is utilized in
this work for the description of functional requirements as
well. Since non-functional timing requirements are to be val-
idated too, this model is extended with temporal attributes
such as latency. Furthermore, it is going to be utilized as
simulation model to allow for setting up the dynamic resid-
ual bus configuration.

Simulator Complete SUT

SUT 1

SUT n

Network Interface

Bus Network

Figure 2: Cluster simulation setup for automotive network

3. CHALLENGES FOR A REAL-TIME
ETHERNET CLUSTER SIMULATION

Commercial residual bus simulators already support the
state of the art automotive bus network technologies. Since
the utilization of RT Ethernet as an in-car network sys-
tem is novel, a suitable simulation environment has differ-
ent attributes and requirements to be fulfilled. In general,
a residual bus simulation is used to validate functional re-
quirements of a developed distributed system. In RT Ether-
net networks, the application behavior strictly relies on the
configured network attributes, so that non-functional tim-
ing requirements during transmission are essential as well.
In particular, this affects TT- and RC-messages which have
to be statically configured on each node. If a message does
not meet the configured timing attributes, the messages will
be delayed or worse, dropped by the network. Therefore,
it is preferable that functional and non-functional require-
ments can be verified with the same test environment, which
enhances error detection.

3.1 Message Classes and Synchronization
A residual bus simulator is connected via the physical

communication interface to the SUT and generates emulated
data packages. In order to validate the behavior of the SUT,
the residual bus simulator has to completely support the
utilized network protocol. In comparison to state of the art
in-car network systems, TTEthernet defines three message
classes with different attributes and priorities. Moreover, the
synchronization procedure relies on dedicated messages that
have to be processed by the residual bus simulation environ-
ment. Depending on the synchronization role of the SUT,
the residual bus simulator has to perform the opposite role in
order to establish a common time base, that allows synchro-
nized transmission of time-triggered messages. Thus, the
simulation is more complex than a residual bus simulation
of state-of-the-art automotive bus network technologies.

In contrast to automotive bus network systems, RT Eth-
ernet bases on switched Ethernet which provides a dedicated
collision domain for each link between two network partici-
pants. A node can start a frame transmission at each point
in time, so that network wide parallel data transmission is
likely to happen. In automotive bus based networks, paral-
lel data transmission without collisions is physically impos-
sible, due to the shared media access. A switched collision
(more precisely congestion) domain influences the setup for
a residual bus simulation, especially if the SUT is composed
of more than one node. In automotive residual bus simula-
tions, the same test setup can be used independently of the
number of nodes of the SUT, as depicted in Figure 2 [6].



Simulator

Network Interface

SUT

(a) Directly connected residual bus simulation

Complete SUTSimulator

Network Interface

SUT 1

Switch

SUT n

(b) Indirectly connected residual bus simulation

Figure 3: Directly and indirectly connected test setups in comparison

3.2 Test Setup Attributes
Due to parallel data transmission, the test setup for a

residual bus simulation in RT Ethernet networks differs from
the previously presented approach. Setups can be classified
in directly and indirectly connected approaches and are de-
picted in Figure 3. In a directly connected setup (Fig. 3a),
the simulator communicates directly with the SUT, while
an indirectly connected approach (Fig. 3b) utilizes an addi-
tional RT Ethernet switch for the communication between
multiple devices of the SUT and the simulator.

The directly connected approach is limited to one single
SUT and can only be utilized for unit testing. Parallel data
transmission is impossible, since only one unit is connected
to the simulator. If for integration purposes more units are
to be verified at the same time, the previously presented ap-
proach is infeasible. An additional RT Ethernet switch has
to be utilized in order to connect all nodes of the SUT to
the residual bus simulator. A directly connected approach
with more than a single network interface is neglectable for
residual bus simulation. If the subsystems-under-test have
to communicate with each other, the simulator has to pro-
vide switching capabilities and the traffic has to be handled.
This handling can result in a negative simulation behavior,
if the routing has to be done in software.

The setup for multiple SUTs is composed of a simulator
with one network interface and is depicted in Figure 3b.
In this approach, different messages can be sent by differ-
ent subsystems, at the same point-in-time. Parallel frame
transmission can result in scheduling and bandwidth conflicts
since different data paths at the switch are to be integrated.
Scheduling conflicts occur if different TT-messages have to
be sent by the simulator and received by different subsys-
tems at the same point-in-time. A parallel transmission of
messages is physically impossible with one interface, so that
the simulator has to sequentially transmit the TT-messages.
The switch is then responsible for the parallel transmission.
Scheduling conflicts can occur too when the simulator has
to receive different TT-messages at the same point-in-time.
In this case, the switch needs to sequence the different mes-
sages. Bandwidth conflicts occur due to the integration of
multiple connections to a single connection. If the accumu-
lated bandwidth of all paths exceeds the available bandwidth
on the connection to the simulator, a residual bus simulation
cannot be properly performed.

The depicted conflicts in indirectly connected simulations
can be resolved by the application of a simulator architecture
with multiple network interfaces. This avoids the necessary
integration of multiple to single connections. Furthermore,
subsystems can communicate with each other via a switch

and thus, do not influence the simulator, since this traffic is
not passed through its interfaces.

The presented approach with an additional RT Ethernet
switch influences the timing behavior of the transmitted
messages as it induces additional forwarding delay. Thus,
it cannot be utilized if non-functional timing requirements
are to be verified. The forwarding delay distorts the tim-
ing behavior, especially if frames are to be integrated and
sequenced at the switch. To validate non-functional timing
requirements only a directly connected residual bus simula-
tor can be utilized.

4. MODELLING WITH MARTE &
ABSTRACT TEST CASE MODELS

In the context of model-based testing, test cases are de-
rived by models that represent system requirements. The
presented residual bus simulation approach is utilized to val-
idate functional and non-functional timing requirements. In
this paper, the MARTE profile for UML is applied to model
functional as well as non-functional requirements. These
models are utilized to manually derive abstract test cases
for the validation of the modeled requirements.

4.1 Description of the Sample Use-case
A sample application and its requirements are described

in the beginning of this section, in order to explain the uti-
lization of the UML profile MARTE. The presented applica-
tion serves as an example for the application of the residual
bus simulation later on. The application is embedded into
a prototype RT Ethernet in-car network, which is used by
us to demonstrate and analyze the next-generation in-car
network. It combines time-critical (steer-by-wire and light
control) and non-critical (multimedia) applications, and is
visualized in Figure 4. Both time-critical (TT- and RC-
messages) as well as BE-messages are concurrently trans-
ferred and are forwarded via two dedicated switches. The
focus is set towards the headlight control application.

The light control dashboard transmits new light control
states to the controller of the headlight subsystem which
acknowledges the changing light states. Furthermore, each
headlight subsystem announces its current light status to the
network. The dashboard system utilizes the announcements
to display the current status to the user. In this paper, the
following functional and non-functional timing requirements
of a single headlight unit are exemplarily depicted.
Functional requirements:

1. The headlight controller must acknowledge every re-
ceived valid light status by replying the status.



Drive-by-
wire (W) Switch Switch Drive-by-

wire (SW)

Camera Multimedia 
Display

Headlight L Headlight R

Lightcontrol 
Dashboard

Multimedia
Dashboard

Figure 4: Distributed light control system in a prototype
RT Ethernet in-car network

2. The headlight controller must periodically announce
its current light status to the network, so that further
applications can use the state of the headlight.

Non-functional requirements:

1. The acknowledgement must arrive at a delay of 500 µs
± 50 µs

2. The transmission rate of the light status announce-
ments must arrive at an interval of 5000 µs ± 5 µs

4.2 Modeling Non-Functional Timing
Requirements with MARTE

In general, the UML profile MARTE is utilized to model
and analyze real-time and embedded systems and builds on
the wide range of supported UML models [3]. The profile
extends UML with the Value Specific Language (VSL) that
is used to annotate classic UML diagrams, and allows for
describing different scale units, as well as mathematical ex-
pressions. Additionally, MARTE supports the modeling of
temporal attributes by providing a detailed clock model. It
is possible to use an ideal, synchronized clock, as well as de-
veloping realistic clocks with predefined drifts. Hence, the
used clock model has to be referenced to point out the behav-
ior of the clock. For modelling time spans or periods of time
as non-functional timing requirements, the application of
an ideal synchronized clock is appropriate. Realistic clocks,
however, can be used to model distributed applications (i. e.
clock synchronization procedures) so that differences on the
local clock can be described. By using the VSL and a suit-
able clock model within classic UML sequence diagrams, we
have modeled the presented functional and non-functional
timing requirements.

Figure 6 depicts UML sequence diagrams, that apply the
presented MARTE syntax. The diagrams describe func-
tional and non-functional timing requirements of the pre-
sented light control system. The dashboard system trans-
mits a new light status (setNewLightStatus(status)) to
the light controller of a headlight system, which acknowl-
edges the new light status by replying the same light sta-
tus to the dashboard (sendCurrentLightStatus(status)).
The procedure is presented in Figure 6a. In order to dis-
play the current light status, the light controller transmits
the status in a fixed interval (see Figure 6b) and represents
the repetition rate. The maximum reply delay is modeled
within VSL and an associated clock model in Figure 6a.
Since a time span is described as requirement, the
diagram has to refer to the ideal clock model
([MARTE_Library::TimedLibrary::idealClock]). The
span is defined via the points in time messageReceived and
replySent which are represented with an additional @. The
associated requirements are described within the

x(t)
y(t)u(t)

Figure 5: Graphical representation of a control system with
multiple in- and outputs

timedConstrained annotation, where the maximum reply
delay is modeled as the difference between messageReceived

and replySent with the value 500 µs. Furthermore, an as-
sociated jitter (100 µs) of the previously defined difference
is modeled. In this case jitter is defined as a window which
allows defining the permitted variation of the reply delay so
that values on the interval of 450 µs to 550 µs are valid. The
requirements of the repetition rate are modeled in Figure
6b and are described via timedContrained, too. Again the
time span is depicted as the difference of two points in time
sendStatusi and is defined as 5000 µs. The associated jitter
is defined with 10 µs so that the repetition rate is valid in
the range of 4995 µs to 5005 µs.

Functional and non-functional timing requirements for the
sample headlight control application were modeled using
MARTE as an extension to standard UML. Thus, associ-
ated test cases for the RT Ethernet residual bus simulation
can be effectively derived from the developed sequence dia-
grams.

4.3 Extending the Abstract Test Case Model
The taxonomy of model-based testing defines the appli-

cation of the same test case in different test environments
(i. e. MiL, SiL, PiL, HiL) [23]. A system is tested in differ-
ent development stages, which enhances error detection by
forcing failures to surface earlier and thus simplifying their
resolution. For executing the same test case in different test
environments, the test case model needs to provide a certain
abstraction level. Information that is used by a dedicated
test environment must be omitted in the test case model.
Skruch et al. [15] have presented an abstract test case model
which has been utilized to validate functional behavior of a
CAN based automotive ECU.

The approach is based on the state space model that de-
fines a control system with multiple inputs and multiple out-
puts. In general, state space models are utilized in control
engineering to analyze dynamic systems. A system modeled
as a state space model consists of a certain number of inputs
(U) and outputs (Y ), and internal states (X), as depicted in
Figure 5. It is defined as vectors with a predefined length,
where u(t) ∈ Ir, x(t) ∈ Sn and y(t) ∈ Om. Here, I and O
define the set of allowed input and output signals, data or
messages, and S defines the set of possible states.

Since the inputs and outputs, and states are time-depend-
ent, the associated test case model must be able to model
a discrete time space. Concrete values to the inputs and
outputs, and states must be assigned to dedicated points in
time. The abstract test case model for functional require-
ments ATCFR is either defined as a quadruple (Equ. 1) or
as a triple (Equ. 2) if the internal states cannot be retrieved
(i. e. black box testing).



sd MessageProcessing <<TimedConstrained>>
on = [MARTE_Library::TimedLibrary::idealClock]

<<timedConstrained>>
{(messageReceived - replySended) = (500,µs)}
{(jitter(messageReceived - replySended)) ≤ (100,µs)}

Dashboard-System Headlight-Controller

setNewLightStatus(status)

@messageReceived

@replySent

sendCurrentLightStatus(status)

(a) Requirements of the status reply feature

sd TimedStateTransmission

<<TimedConstrained>>
on = [MARTE_Library::TimedLibrary::idealClock]

Dashboard-SystemHeadlight-Controller

@ sentStatusi

updateCurrentLightstatus(status)

<<timedConstrained>>
{(sendStatusi - sendStatusi-1) = (5000,µs)}
{(jitter(sendStatusi - sendStatusi-1)) ≤ (10,µs)}

Repeat
[“timedEvent” (5,ms)]

<<TimedProcessing>>
on = [MARTE_Library::TimedLibrary::idealClock]

(b) Requirements of the time-triggered transmission

Figure 6: UML MARTE diagrams model functional and non-functional requirements

ATCFR = (T,U,X, Y ) (1)

∈ (N1×k × Ir×k × Sn×k ×Om×k)

ATCFR = (T,U, Y ) (2)

∈ (N1×k × Ir×k ×Om×k)

In analogy to the state space model, U and Y represent
the inputs and outputs, and X the internal state. Addi-
tionally, T describes the discrete points in time, at which
specific values are located at the vectors. This model de-
fines all required attributes to validate functional system
requirements.

However, this model is insufficient to validate non-functio-
nal timing requirements such as the presented reply time of
a system and the repetition rate of a message. It needs to
be extended by specific attributes that allow for modeling
the required time spans. Thus, latency, latency jitter, rate
and rate jitter are added to the presented model. In this
case, latency defines the maximum reply time of the SUT
to react to a specific input. Rate defines the time span of
two consecutive signals or messages of the same type that
are generated by an output. The jitters are used to model
the maximum allowed variation of both requirements. The
internal state is immaterial in the case of residual bus sim-
ulation and can be neglected. The abstract test case model
for non-functional requirements ATCNFR is presented as 7-
tuple in Equation 3.

ATCNFR = (T,U, Y, L,R,∆L,∆R) (3)

∈ (N1×k × Ir×k ×Om×k × Ra × Rb × Ry × Rz)

In this model, the first three attributes are the same as
previously presented. Furthermore, L depicts the latency,
R the rate and ∆L as well as ∆R the variations. The la-
tency requirement L contains a elements la(ug, yh), where
g = 1, 2, . . . r, h = 1, 2, . . .m and a ≥ 1. Thus, it is com-
posed of an in- and output pair. The rate R contains b
elements rb(yh), where h = 1, 2, . . .m and b ≥ 1 and is used
on a specific output. The relation of the latency jitter ∆L

contains y elements: jLy(lp), p = 1, 2, . . . a and y ≥ 1 and in
analogy for the rate ∆R: jRz(rq), q = 1, 2, . . . b and z ≥ 1.
In contrast to inputs and outputs, the timing requirements
are independent of the current time and are valid for the
whole test case.

This model allows defining a specific value of an input and
the associated expected output. Furthermore, time spans to
inputs and output pairs, as well as output generation rates
are defined of a SUT. Therefore, this model simultaneously
defines functional and non-functional requirements and can
be used for any distributed application that strictly relies
on timing requirements. An abstract test case is expressed
in the table notation in Table 1. This notation is further
utilized in order to depict the executed test cases.

4.4 Utilization as Simulation Model
To apply the modeling work to the residual bus simula-

tion, a suitable simulation model has to be executed on the
simulator. In general, this is realized by dedicated models,
that represent the physical system. The simulation behavior
is either online processed during execution or offline gener-
ated in the run-up to simulation. In the context of residual
bus simulation where requirements are to be verified during

T t0 t1 . . . tk

U
u1(t0) u1(t1) . . . u1(tk)

...
...

. . .
...

ur(t0) ur(t1) . . . ur(tk)

Y
y1(t0) y1(t1) . . . y1(tk)

...
...

. . .
...

ym(t0) ym(t1) . . . ym(tk)

L
l1(u1, y1)

...
la(ur, ym)

R
r1(y1)

...
rb(ym)

∆L

jL1(l1)
...

jLy(la)

∆R

jR1(r1)
...

jRz(rb)

Table 1: Abstract test case model in table notation



Residual Bus Simulator SUTConfigurator

RT-Ethernet
DPM

MicrocontrollerWorkstation

Figure 7: Implementation of the presented residual bus sim-
ulator architecture

simulation, offline generated simulation behavior is appro-
priate. The same test case with the same attributes can be
executed several times to validate the implementation.

To model the behavior of the simulated subsystem the
point in time of data generation at the input of the SUT
needs to be known. This conforms to the time-based discrete
simulation approach, where an event list is utilized contain-
ing an event–action-point-in-time pair. Our presented ab-
stract test case model ATCNFR provides this information
using the time vector T and the time dependency of the in-
puts. Thus, the abstract test case model is an appropriate
alternative to model simulation behavior as well.

With this abstract test case model, we can describe two
aspects of a residual bus simulation. First, it can be used as
a simulation model to design the simulation behavior, and
second, to develop test cases for the validation of functional
and non-functional requirements of a SUT.

5. APPLICATION OF THE RT ETHERNET
RESIDUAL BUS SIMULATION

The presented approaches of a residual bus simulation and
an abstract test case model are implemented on a prototype
platform, to demonstrate the application of a RT Ethernet
residual bus simulation. The previously presented require-
ments of the automotive prototype application are exem-
plarily verified.

5.1 Implementing a RT Ethernet
Residual Bus Simulator

The implementation of the residual bus simulator is re-
alized using the presented setup topology of common resid-
ual bus simulators with three dedicated components and is
depicted in Figure 7. The configurator is used for the cre-
ation of the static network configuration of the simulator,
the dynamic behavior by creating test cases, as well as the
analyses of the results. The architecture is equivalent to
the approach presented in [8] and is composed of two differ-
ent hardware platforms. They are interconnected via a dual
port memory (DPM) interface in order to allow fast data
exchange in both directions. The workstation is running the
discrete time-based simulation environment that generates
the Ethernet frames as raw data and transfers the data to
the microcontroller. The microcontroller executes the RT
Ethernet software stack and transmits the generated frames
to the SUT regarding its message class. In order to measure
time spans, which is mandatory to validate non-functional
timing requirements, the microcontroller adds timestamps
to any received and transmitted frame.

To be able to analyze the results, transmitted as well as
received frames are stored with their associated timestamp
on the workstation. The workstation is responsible to create
Ethernet trace files that can be analyzed after the test case
was executed. The used microcontroller is composed of a

dedicated high precision system clock, so that every frame
can be equipped with a timestamp with nanosecond preci-
sion. Furthermore, the presented abstract test case model is
implemented as a XML data model. It is processed by the
simulation environment to be utilized as simulation model.
Since a test case only contains abstract representations of
the data to be generated, the simulation environment fur-
ther has to convert the abstract data into an executable test
case. Thus, the abstract test case is converted to the re-
quired event list by extracting the data of an input and the
value of the time vector. This residual bus simulation ar-
chitecture can be adequately utilized to validate functional,
as well as non-functional timing requirements, which will be
shown in the next section.

5.2 Applying a Residual Bus Simulation
for Verification Purposes

The previously presented requirements were modeled by
the application of UML-MARTE and were shown in the se-
quence diagrams (see Figure 6). Abstract test cases have
been manually inherited by the utilization of the developed
sequence diagrams. In order to validate the modeled require-
ments of the headlight controller, the residual bus simulator
has to emulate the behavior of the dashboard system.

The test setup of the residual bus simulation is applied
with a directly connected approach, since only this test setup
allows validating functional and non-functional timing re-
quirements at the same time. The induced forwarding delay
when applying a indirectly connected residual bus simula-
tion distorts the timing behavior of a transmitted frame.
The static residual bus simulation configuration could be di-
rectly taken from the headlight controller, so that the simu-
lator processes Ethernet frames that are normally generated
and received by the dashboard controller. In this case, the
residual bus simulator transmits the state change messages
and receives acknowledge and current state announcement
frames. The test case verifies the presented functional and
non-functional requirements at the same time and is shown
in Table 2. A headlight subsystem is composed of dimmed
headlights and additional LEDs for the application of day-
time running lights, which are adjustable in the brightness.

To validate the functional requirements, the SUT is reset
with the HL_OFF-message at the beginning of the test. It is
used to power off all lamps and transfer the headlight sys-
tem into a defined state. At two seconds, the actual test
starts and the LEDs are set to a brightness of 0 %. After-
wards, the LEDs are set to 100 % brightness. To demon-
strate that messages with irregular values do not influence
the headlights behavior, the brightness is set to 50 % and
afterwards to 101 %, where the last value is irregular. The
test is finished by setting a regular value to the headlights
again. The non-functional requirements are modeled in the
same test-case and are presented in the previously proposed
way. The expected acknowledge latency is defined as 500 µs
with an associated variation of 50 µs. The rate is 5000 µs
with a variation of 10 µs.

The results of the first execution of the test case are pre-
sented with the expected and actual values in Table 2 as
well. The non-functional timing requirements are fulfilled
and are highlighted with a light gray background. The la-
tency (Lact) of the in- and output pair messages is mea-
sured exactly with 518 µs. Thus, the latency requirements
are fulfilled, since the measured values stay within the al-



T 1 s 2 s 5 s 7 s 9 s 11 s
U u1 = HL_OFF u1 = LED_0 u1 = LED_100 u1 = LED_50 u1 = LED_101 u1 = LED_75

Y y1 = HL_OFF y1 = LED_0 y1 = LED_100 y1 = LED_50 y1 = LED_50 y1 = LED_75

Yact y1 = HL_OFF y1 = HL_OFF y1 = HL_OFF y1 = HL_OFF y1 = HL_OFF y1 = HL_OFF

L l1(u1, y1) = 500 µs
∆L jL1(l1) ≤ 100 µs
Lact l1(u1, y1) = 518 µs to 518 µs, MED = 518 µs, AVG = 518 µs
R r1(y1) = 5000 µs

∆R jR1(r1) ≤ 10 µs
Ract r1(y1) = 4998 µs to 5002 µs, MED = 5000 µs, AVG = 5000 µs

Table 2: Tested application with negative test result. Dark gray cells depict negative, light gray positive test results

lowed range. The rate of the output is in the interval of
4998 µs to 5002 µs with a median and an average of 5000 µs.
The requirements are fulfilled as well, since the measured
values are within the allowed range.

On contrary, the functional requirements are not fulfilled
during the first execution and are highlighted with a dark
gray background. Light state changes are acknowledged
with an Ethernet frame. The reset is acknowledged with
the expected value, however, the state changes of the LED
brightness are not acknowledged with the expected value.
For each generated state change message, the associated ac-
knowledge message contains the same HL_OFF value. This
behavior indicates a faulty headlight controller implemen-
tation. After manually reviewing the source code, a wrong
implementation of the acknowledgement function has been
confirmed and afterwards resolved.

The same test case has been executed again and is de-
picted in Table 3. The analysis shows, that all expected
values of the functional and non-functional requirements
are fulfilled, so that the execution results in a positive test
result, which is highlighted with a light gray background.
The execution of this test case does not validate the com-
plete functional behavior of the headlight system. It is used
to demonstrate the application of a residual bus simulator
in RT Ethernet networks to validate functional and non-
functional timing requirements.

6. CONCLUSION & OUTLOOK
In this paper a residual bus simulation methodology for

the next generation in-car network was presented, which can
be used to validate functional and non-functional timing re-
quirements at the same time. A residual bus simulation is
a methodology that is used during the validation process to
validate modeled requirements. RT Ethernet is a promising
technology to overcome the issues given by current in-car
networks. It provides high bandwidth while fulfilling real-
time characteristics. Thus, validating non-functional timing
requirements are of particular interest using RT Ethernet.

Model-based development and testing methods are re-
quired to support the development process of applications
using RT Ethernet. In general, systems are designed in
dedicated models to present requirements and implemen-
tation realizations. The UML profile MARTE was applied
to model functional and non-functional timing requirements
in sequence diagrams. These models are used to derive test
cases for the system validation in the model-based testing
principle. A residual bus simulator emulates parts of the dis-
tributed system and is connected to the SUT via the physical
communication interface. It has to undertake synchroniza-
tion mechanisms and generates data frames that emulate a

physical system for the SUT.
TTEthernet was used as a real-time aware Ethernet pro-

tocol, but the challenges with parallel frame transmission
can be transferred to any RT Ethernet protocol. TTEther-
net provides three dedicated message classes with different
transmission attributes and a time synchronization proce-
dure to provide a global clock. A residual bus simulation for
TTEthernet networks must provide support for these mes-
sage classes and the synchronization process. In contrast to
a residual bus simulation for automotive bus based networks,
residual bus simulation test setups in RT Ethernet networks
depend on the number of nodes to be tested inside the SUT.
It can be classified in directly and indirectly connected ap-
proaches. Ethernet as base network technology provides a
dedicated transmission domain for each connected device,
so that parallel frame transmission has to be taken into ac-
count. A directly connected residual bus simulation must
be used to validate non-functional timing requirements, but
is limited to a single node as SUT. Indirectly connected ap-
proaches provide a solution to connect multiple nodes as
SUT, but scheduling and bandwidth conflicts may occur, if
the simulator is composed of only one network interface.

In order to test non-functional requirements, an existing
abstract test case model was extended with the required
temporal attributes latency, rate and their related jitters.
This abstract test case model conforms to the model-based
testing methodology. It can be utilized on different test-
ing facilities to validate the system in different development
stages. Nevertheless, this model can be used to model tim-
ing requirements in any real-time aware network such as
FlexRay or AVB Ethernet. Due to the provision of a discrete
time scale, it can be further utilized as simulation model to
drive the residual bus simulation.

The presented methodology was successfully applied to a
distributed headlight control system inside a prototype RT
Ethernet in-car network to validate modeled requirements.

RT Ethernet residual bus simulation can support the tran-
sition to next generation in-car networks. In the future,
we are going to investigate how established model-based
methodologies such as AUTOSAR and EAST-ADL could
co-exist with the presented work. Furthermore, we are go-
ing to analyze the real-time and performance aspects of the
presented approach, by implementing it to a more suitable
hardware platform without the necessity of dual-port mem-
ory.

Acknowledgements
This work is funded by the Federal Ministry of Education
and Research of Germany (BMBF) within the RECBAR
project.



T 1 s 2 s 5 s 7 s 9 s 11 s
U u1 = HL_OFF u1 = LED_0 u1 = LED_100 u1 = LED_50 u1 = LED_101 u1 = LED_75

Y y1 = HL_OFF y1 = LED_0 y1 = LED_100 y1 = LED_50 y1 = LED_50 y1 = LED_75

Yact y1 = HL_OFF y1 = LED_0 y1 = LED_100 y1 = LED_50 y1 = LED_50 y1 = LED_75

L l1(u1, y1) = 500 µs
∆L jL1(l1) ≤ 100 µs
Lact l1(u1, y1) = 517 µs to 518 µs, MED = 518 µs, AVG = 518 µs
R r1(y1) = 5000 µs

∆R jR1(r1) ≤ 10 µs
Ract r1(y1) = 4998 µs to 5002 µs, MED = 5000 µs, AVG = 5000 µs

Table 3: Tested application with positive test result. Dark gray cells depict negative, light gray positive test results

7. REFERENCES
[1] Aeronautical Radio Incorporated. Aircraft Data

Network, Part 7, Avionics Full-Duplex Switched
Ethernet Network. Standard ARINC Report 664P7-1,
ARINC, 2009.

[2] E. Bringmann and A. Krämer. Model-Based Testing
of Automotive Systems. In 2008 1st Int. Conf. on
Software Testing, Verification and Validation, pages
485–493, Apr. 2008.

[3] S. Demathieu, F. Thomas, C. Andre, S. Gerard, and
F. Terrier. First Experiments Using the UML Profile
for MARTE. In 11th IEEE Int. Symp. on Object
Oriented Real-Time Distributed Computing 2008,
pages 50–57, Piscataway, New Jersey, May 2008. IEEE
Press.

[4] Eberspächer. FlexConfig RBS - Remaining Bus
Simulation for FlexRay and CAN with FlexConfig
RBS. http://www.eberspaecher-electronics.com, 2014.

[5] FlexRay Consortium. FlexRay Communications
System Electrical Physical Layer Specification.
Specification 3.0.1, FlexRay Consortium, Stuttgart,
Oct. 2010.

[6] T. M. Galla. Cluster Simulation in Time-Triggered
Real-Time Systems. PhD-Thesis, TU Wien, Dec. 1999.

[7] International Organization for Standardization. Road
vehicles – Controller Area Network (CAN). ISO
11898, ISO, Genf, 2003.

[8] O. Karfich, F. Bartols, T. Steinbach, F. Korf, and
T. C. Schmidt. A Hardware/Software Platform for
Real-time Ethernet Cluster Simulation in OMNeT++.
In Proc. of the 6th Int. ICST Conf. on Simulation
Tools and Techniques, pages 334–337, New York, Mar.
2013. ACM-DL.

[9] MOST Cooperation. MOST Specification Rev. 3.0 E2.
Technical report, MOST, July 2010.

[10] K. Müller, T. Steinbach, F. Korf, and T. C. Schmidt.
A Real-time Ethernet Prototype Platform for
Automotive Applications. In 2011 IEEE Int. Conf. on
Consumer Electronics - Berlin, pages 221–225,
Piscataway, New Jersey, Sept. 2011. IEEE Press.

[11] Object Management Group. MARTE - Modeling And
Analysis Of Real-Time Embedded Systems.

[12] Object Management Group. UML - Unified Modeling
Language.

[13] OMNeT++ Community. OMNeT++ 4.4.1.

[14] A. Pretschner, M. Broy, I. H. Krüger, and T. Stauner.
Software Engineering for Automotive Systems: A
Roadmap. In 2007 Future of Software Engineering,

FOSE ’07, pages 55–71, Washington, DC, USA, May
2007. IEEE Computer Society.

[15] P. Skruch, M. Panek, and B. Kowalczyk. Model-Based
Testing in Embedded Automotive Systems. In
J. Zander, I. Schiefdecker, and P. J. Mosterman,
Editors, Model-Based Testing for Embedded Systems,
Computational Analysis, Synthesis and Design of
Dynamic Systems Series, Chap. 19, pages 545–578.
CRC Press, Boca Raton, Florida, Sept. 2011.

[16] Society of Automotive Engineers - AS-2D Time
Triggered Systems and Architecture Committee.
Time-Triggered Ethernet AS6802. SAE Aerospace,
Nov. 2011.

[17] T. Steinbach, H. Dieumo Kenfack, F. Korf, and T. C.
Schmidt. An Extension of the OMNeT++ INET
Framework for Simulating Real-time Ethernet with
High Accuracy. In Proc. of the 4th Int. ICST Conf. on
Simulation Tools and Techniques, pages 375–382, New
York, Mar. 2011. ACM-DL.

[18] T. Steinbach, F. Korf, and T. C. Schmidt. Real-time
Ethernet for Automotive Applications: A Solution for
Future In-Car Networks. In 2011 IEEE Int. Conf. on
Consumer Electronics - Berlin, pages 216–220,
Piscataway, New Jersey, Sept. 2011. IEEE Press.

[19] T. Steinbach, H.-T. Lim, F. Korf, T. C. Schmidt,
D. Herrscher, and A. Wolisz. Tomorrow’s In-Car
Interconnect? A Competitive Evaluation of IEEE
802.1 AVB and Time-Triggered Ethernet (AS6802). In
2012 IEEE Vehicular Technology Conf. (VTC Fall),
Piscataway, New Jersey, Sept. 2012. IEEE Press.

[20] W. Steiner and G. Bauer. Mixed-criticality Networks
for Adaptive Systems. In 2010 IEEE/AIAA 29th
Digital Avionics Systems Conf. (DASC), pages
5.A.3–1–5.A.3–10, Oct. 2010.

[21] M. Utter, A. Pretschner, and B. Legeard. A
Taxonomy of Modelbased Testing. Technical Report
Working Paper: 04/2006, University of Waikato,
Hamilton, New Zealand, Apr. 2006.

[22] Vector Informatik. CANoe 8.2 - ECU Development &
Test with CANoe. http://vector.com, 2014.

[23] J. Zander, I. Schiefdecker, and P. J. Mosterman. A
Taxonomy of Modelbased Testing for Embedded
Systems from Multiple Industry Domains. In
J. Zander, I. Schiefdecker, and P. J. Mosterman,
editors, Model-Based Testing for Embedded Systems,
Computational Analysis, Synthesis and Design of
Dynamic Systems Series, Chap. 1, pages 3–22. CRC
Press, Boca Raton, Florida, Sept. 2011.


