A Hardware/Software Co-Design Approach for Ethernet Controllers to Support Time-triggered Traffic in the Upcoming IEEE TSN Standards

Friedrich Groß Till Steinbach
Franz Korf Thomas C. Schmidt Bernd Schwarz

Hamburg University of Applied Sciences {friedrich.gross, till.steinbach, korf, schmidt, schwarz}@informatik.haw-hamburg.de

4th IEEE International Conference on Consumer Electronics - Berlin September 8th, 2014

Agenda

HW/SW Co-Design for TDMA Ethernet controllers

F. Groß

Introduction & Motivation

Concept & Results

- 1 Introduction & Motivation
- 2 Concept & Results
- 3 Conclusion & Outlook

Motivation

Why is Time-Triggered Ethernet needed?

- Modern cars: > 70 ECUs; about 2500 message types
- Bandwidth and timing requirements increase
- Now used communication systems came to their limits due they are not scalable
- Next generation backbones will most likely base on real-time Ethernet

HW/SW Co-Design for TDMA Ethernet controllers

F. Groß

Introduction & Motivation

Concept & Results

Introduction

How TDMA in Time-Triggered Ethernet works

HW/SW Co-Design for TDMA Ethernet controllers

F. Groß

Introduction & Motivation

Concept & Results

Introduction

Properties of Time-Triggered Ethernet

HW/SW Co-Design for TDMA Ethernet controllers

F. Groß

- Real-time extension for standard Ethernet
- Deterministic behavior, low latency and jitter
- Clock synchronisation and special switches are needed
- TTEthernet, Profinet IRT, upcoming IEEE 802.1Qbv, ...
- This work focuses TTEthernet AS6802

Introduction & Motivation

Concept & Results

Motivation

Why Hardware/Software Co-Design?

HW/SW Co-Design for TDMA Ethernet controllers

F. Groß

Introduction & Motivation

Concept & Results

Conclusion & Outlook

- Reduce computational power
 - On a high network load up to 90% of a CPU is used (ARM9 @ 200Mhz) ¹
 - One reception buffer for all traffic-classes
 - Every received frame must be handled immediately for garbage collection
- Reduce timing requirements for OS
 - CAN-Bus and FlexRay achieved good results with HW/SW Co-Design

¹K. Müller "A Real-time Ethernet Prototype Platform for Automotive Applications," in 2011 ICCE-Berlin

Contribution

HW/SW Co-Design for TDMA Ethernet controllers

F. Groß

Introduction & Motivation

Concept & Results

- Scalable HW/SW Co-Design TTEthernet Controller
- Include clock synchronisation
- Results of a prototype implementation on a FPGA

Agenda

HW/SW Co-Design for TDMA Ethernet controllers

F. Groß

Introduction & Motivation

Concept & Results

Conclusion & Outlook

1 Introduction & Motivation

2 Concept & Results

ConceptTypical Ethernet Design

CPU CPU-Bus 1-to-1 **FIFO** MAC External Memory RAM controller PHY HW/SW Co-Design for TDMA Ethernet controllers

F. Groß

Introduction & Motivation

Concept & Results

Concept Main Idea

CPU CPU-Bus 1-to-1 Time-MAC Triggered **Ethernet** Coprocessor PHY

HW/SW Co-Design for TDMA Ethernet controllers

F. Groß

Introduction & Motivation

Concept & Results

FPGA CPU CPU-Bus RX-Buffers Timestamp RX Injector BE Switch Fixed MAC timer TX-Buffers ΤX Guard PHY DV GMII/MII PHY

HW/SW Co-Design for TDMA Ethernet controllers

F. Groß

Introduction & Motivation

Concept & Results

Architecture - Timestamp Injector

- Timestamps needed for Synchronisation and validation of TT Frames
- SW-Implementation has low accuracy
- Record Timestamps with PHY_DV (10 ns jitter)
- Validate with rx interrupt
- FIFO for TS
- Works on the fly
- Delay of 2 clock cycles

HW/SW Co-Design for TDMA Ethernet controllers

F. Groß

Introduction & Motivation

Concept & Results

Conclusion & Outlook

109 LUTs ($\widehat{=}$ 5%); 72 Flip Flops ($\widehat{=}$ 3.8%) of all (+ HW FIFO)

Concept Architecture - Switch

- Need to separate Traffic to different Buffers
- SW-Implementation needs the most CPU-Resources
- Switches based on Dest-MAC, Ether-Type, Timestamp
- Independent interrupts
- Application specific buffer size
- Works on the fly
- Delay of 6 clock cycles

HW/SW Co-Design for TDMA Ethernet controllers

F. Groß

Introduction & Motivation

Concept & Results

Conclusion & Outlook

307 LUTs ($\widehat{=}$ 14.1%); 529 Flip Flops ($\widehat{=}$ 11.7%) of all

Architecture - Synchronisation

- Synchronize internal clock to network clock
- SW-Implementation need more energy
- On full HW-Implementation OS modification is very low
- Full AS6802 client implement ation
- Rate-correction

HW/SW Co-Design for TDMA Ethernet controllers

F. Groß

Introduction &

Concept & Results

Conclusion & Outlook

1100 LUTs (≘ 50.3%); 736 Flip Flops (≘ 21%) of all

Architecture - Fixed point timer

- Addon for Synchronisation
- Keeps clock synchronized during the whole cycle
- Smaller reservation window
 - -> more bandwidth
- SW-Implementation impossible
- Rate-correctable timer implemented as Fixed-Point timer

HW/SW Co-Design for TDMA Ethernet controllers

F. Groß

Introduction &

Concept & Results

Conclusion & Outlook

55 LUTs ($\hat{=}$ 2.5%); 55 Flip Flops ($\hat{=}$ 1.2%) of all

Architecture - TX-Buffers and Guard

 Sends TT on schedule and BE messages between TT messages

- CPU can put async messages to Buffers
- OS don't need
 Time-Triggered schedule functions
- SW-Implementation has high Jitter 1µs to 10µs
- HW-Implementation has 80ns Jitter
- Application specific buffer size

HW/SW Co-Design for TDMA Ethernet controllers

F. Groß

Introduction & Motivation

Concept & Results

Conclusion & Outlook

614 LUTs ($\widehat{=}$ 28.1%); 475 Flip Flops ($\widehat{=}$ 5.4%) of all

ConceptPossible Partitioning

- CPU-Res.: few percent
- HW-Res.: safe 21% FF's and 50.3% LUT's
- Accuracy: no effect
- Energy: much higher

HW/SW Co-Design for TDMA Ethernet controllers

F. Groß

Introduction &

Concept & Results

ConceptPossible Partitioning

- CPU-Res.: few percent
- HW-Res.: safes 1% FIFO's and 18.6% LUT's
- Accuracy: Jitter rises up to 10µs
- Energy: still is no statement possible

HW/SW Co-Design for TDMA Ethernet controllers

F. Groß

Introduction & Motivation

Concept & Results

Concept HW/SW Co-Design

HW/SW Co-Design for TDMA Ethernet controllers

F. Groß

Introduction & Motivation

Concept & Results

Agenda

HW/SW Co-Design for TDMA Ethernet controllers

F. Groß

Introduction & Motivation

Concept & Results

- 1 Introduction & Motivation
- 2 Concept & Results
- 3 Conclusion & Outlook

Conclusion

HW/SW Co-Design for TDMA Ethernet controllers

F. Groß

Introduction & Motivation

Concept & Results

- Full Hardware implementation of a TTEthernet Controller
- Approach how to scale it
- Result: HW/SW Co-Design is a good way to deduce CPU consumption of a Time-Triggered Ethernet protocol stack.

Outlook

HW/SW Co-Design for TDMA Ethernet controllers

F. Groß

Introduction & Motivation

Concept & Results

- AUTOSAR is a automotive system architecture without time-triggered scheduling mechanisms
- Develop driver for AUTOSAR
- Run different partitions of HW/SW Co-Desing

Thank you!

HW/SW Co-Design for TDMA Ethernet controllers

F. Groß

Introduction &

Concept & Results

Conclusion & Outlook

Thank you for your attention!

■ Website of CoRE research group: http://www.haw-hamburg.de/core

SPONSORED BY THE

