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Abstract— Autonomous driving is one of the most challenging
tasks of the automotive industry. As a subtask, the estimation of
driveable and non driveable space is often solved by applying
occupancy grids. The information about non driveable space
can be used to improve object tracking. This paper presents an
approach for object tracking and modelling in an occupancy
grid map. Tracking objects on grid cells yields the advantage of
a consistent environmental model on the occupancy grid map.
We introduce the occupancy grid map as the only information
source for the object tracking module. Taking advantage of the
Dempster Shafer theory, a dynamic belief of conflicting cells
can be estimated. This dynamic belief is then accumulated in
a tracked object model. This is a grid based free form object
model that uses detached grid cells to model vehicles in urban
environment. We reduce false positives and initialization time
by maintaining a dynamic belief for each object.

Index Terms— Object Tracking, Particle Filter, DATMO,
Laser Scanner, Evidential Grid, Occupancy Grid Map.

I. INTRODUCTION

An accurate environmental perception is a requirement for
advanced driver assistant systems (ADAS) and mandatory
for autonomous vehicles. As a modelling technique of the
static environment, the occupancy grid framework proposed
in [1] has dominated the scope and has been applied suc-
cessfully to multiple systems [2] [3]. The original version
of occupancy grid mapping suffers from artefacts produced
by dynamic objects [4]. To prevent these issues, there are
several techniques to filter out dynamic information or use
them to set up grid map based tracking approaches. The basic
idea of occupancy grid mapping is to model the environment
as a set of discrete cells containing probabilities of the
presence (occupancy) or absence (freeness) of an object.
Elfes [1] proposes using a binary Bayesian filter modelling
the probability that a cell is occupied. In recent literature this
idea has been extended by the Dempster Shafer theory (DST)
using independent belief masses for occupancy and freeness.
This enables the resolution of conflicts between independent
contradictory measurements. Moras [5] presents an approach
using an evidential dynamic detection based on the measured
conflict of a cell. We extend this dynamic detection with an
estimation that a cell is static using neighbouring cells.
In this paper we propose a novel approach using grid cells
extended with dynamic belief masses to set up and validate
new object tracks. Using these grid cells we associate multi-
ple cells to a moving object employing the cell representation
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directly to update the object state.
We set up particle filtered objects that accumulate dynamic
measurements in a separated Dempster Shafer belief mass.
These accumulated belief masses will determine if the target
is generated from clutter or from a real moving object (false
positive reduction). In some highway scenarios, the tracking
suffers from uncertain distance measurements of the road
boundary. In such scenarios we use dynamic beliefs for
pruning ghost objects before they could produce failures in
driver assistant systems. We show that dynamic cell tracking
could be used in urban and highway scenarios (see section
V).
We use a particle filter to track a dynamic cell cluster and
then conceptually detach these cells and keep track of them
in grid coordinates. Each particle consist of a cluster of grid
cells. Therefore a particle set allows free form modelling
on multiple clusters. These clusters are accumulated as an
object attribute and represents the shape of an object as a
footprint.
The main contribution of this paper is the detection and
modelling of dynamic objects as grid cells maintaining a
dynamic beliefs mass based on DST. Using detached cell
cluster allows a free from modelling of dynamic objects
on grid level. This paper is structured as follows. Section
II describes the state of the art. Section III gives a brief
overview about our occupancy grid mapping and feature
extraction. In section IV we present our particle filter based
tracking and give an overview of the track management.
Some experimental results are given in section V and finally
in section VI conclusions and future work are discussed.

II. RELATED WORK

Over the last years, several grid based tracking approaches
have been studied. These tracking approaches depends on a
consistent environmental perception (static/dynamic objects).
Representing a consistent environment model on grid maps
including dynamic objects turns out to be a challenge.
Modelling object dynamics in grid maps is described in
several publications [5] [3] [2]. However there are still open
questions how to use the extended information generated by a
grid map in the object tracking later on. Two basic techniques
exist for modelling dynamics in occupancy grid maps.

• Cell attribute extension: extend each grid cell with
dynamic information and track each of these cells
individually [6].

• Cell association to track: associate a grid cell or cluster
to a separated filter and keep track of the moving cells
independently such as proposed in [3] [2].



Using the cell association technique for object tracking,
information can be gathered in two ways [7]:
• Extract features describing the tracked object from an

occupancy grid map and transform these feature to vehi-
cle coordinates. A feature can be the shape, geometric
model or contour of an object. The tracking uses the
extracted features to update the object states.

• Use the cell representation of the occupancy grid map
directly in object tracking. The object state is repre-
sented in grid coordinates and is updated by a set of
cells.

The changing shape of a moving object over time can
be modeled in multiple ways using grid maps. As a grid
map based approach object local grid maps are introduced
in [8]. Object local grid maps represent a separated grid
map for each object with a relative anchor point to the
ego vehicle. The idea of object local grid maps has been
extended by [9]. Aue [9] provides a framework for a detailed
shape estimation on occupancy grids with height information
using object local grid maps. He uses an object local grid
for shape estimation on contours to perform Kalman filter
updates. Instead of an object local grid map with shape
information contained in its cells, the approach we propose
aims to move seperated detached grid cells assigned to an
object on the map. Our approach is comparable with the
technique presented in [10]. As a difference we use the DST
framework to update the dynamic belief masses of detached
grid cells and use a particle JPDA for track association.
Schutz contributes a shape estimation and tracking technique
on occupancy grid map. He uses roa blackwellized particle
filter to track cells of moving objects.

III. OCCUPANCY GRID MAPPING AND DYNAMIC
ESTIMATION

In our case a complete representation of the environment
is built from the measurements of multiple multilayer lidar
sensors. We accumulate these measurements using a grid
based fusion technique in a single occupancy grid map using
DST. At the end of this section we introduce an approach
for grid based dynamic estimation based on the work of [5].
Fusion systems benefit from the cell conflict management
of the DST framework. Table I shows a short example
of a binary Bayes filter compared with a DST cell. The
binary Bayes filter at t = 2 does not show any additional
information to t = 0, despite there have been measurements
added to the filter. While the DST cell shows a conflicting
measurement between belief mass for occupancy mMh,k(O)
and the belief mass being free mMh,k(F ).

A. Dempster Shafer Theory on Occupancy Grid Maps

The Dempster Shafer theory is a mathematical theory
allowing the combinations of evidences [11]. An evidence
can be estimated by multiple sources and an own degree of
belief. In DST all possible hypothesis of a system are defined
by a set Ω of mutually exclusive propositions. We define
for occupancy grid mapping the set as Ω = {f, o} where f
is the state for a free and o is the state for an occupied cell.

Binary Bayes Filter Dempster Shafer
for the cell h at t=0:

P [z0] = 0.5 mMh,0(O) = 0.0
mMh,0(F ) = 0.0
mMh,0(U) = 1.0

Measurement z1 arrives: 90% probability for being occupied
P [z1|y1] = 0.9 mMh,1(O) = 0.9
P [z1] = 0.9 mMh,1(F ) = 0.0

mMh,1(U) = 0.1
Measurement z2 arrives: 90% probability being free

P [z2|y2] = 0.1 mMh,2(O) = 0.47
P [z2] = 0.5 mMh,2(F ) = 0.47

mMh,3(U) = 0.06

TABLE I: Binary Bayes Filter and Dempster Shafer Theory
on contradictory measurements

The elements of the powerset 2Ω = {∅, {f}, {o}, {f, o}}
can be used to represent the actual state of the system. DST
uses mass functions m : 2Ω 7→ [0, 1] assigning a belief mass
to each element of the power set.

mM⊕N (A) =
1

η

∑
B∩C=A6=∅

mM (B) ·mN (C) (1)

η =1−
∑

B∩C=∅

mM (B) ·mN (C)

The set A ⊆ Ω contains all elements that represent a state of
interest. Dempster’s rule for combination (see equation 1) is
used to combine the two sets of masses mM and mN . B and
C are arbitrary subsets of Ω, creating A by their intersection.
Where η can be regarded as the agreement of the belief of
the masses. The fusion process of an occupancy grid map is
committed on cell level.
Extending the idea of occupancy grid mapping, we create
separated measurement grid layers for each purpose. Layer1

encompasses the original idea of grid mapping and builds
a model for the static environment in the view of the
ego vehicle. In Layer1 we use the power set 2Ω. The
measurement grid map and the occupancy grid map itself are
both grid maps with the same attributes. So we are defining
two mass functions: mM,k() as the mass function for the
occupancy grid and mS,k() for the measurement grid.

B. Fusion Architecture

In order to build a consitent grid map a fusion process
is needed to accumulate information gathered from multiple
sensors at different time slots. For each laser scanner an own
measurement grid map (MeasGrid) is built (see figure 1).
So the process of occupancy grid mapping is triggered by
every lidar scan. All measurement grids have to be in the
same coordinates as the current grid map (GridMapk) rep-
resentation. Therefore each measurement has to be mapped
to a joint coordinate system. Matching the measurement grid
with the occupancy grid (GridMapk−1) the accurate vehicle
position and orientation V ehGridPos within the grid map
has to be estimated. Using the estimated V ehGridPos each
measurement grid is fused with the occupancy grid map ap-
plying equation 1. The applied sensor model is split into two



processes: the free space and the occupied space estimation.
This separation is done because the free space estimation
require a lot more sensor specific tuning. A measurement

Fig. 1: System Fusion Architecture in a UML 2.0 activity
diagram. Blue arrows describe activity transitions. Black
arrows show the flow of objects.

grid map can be fused to the occupancy grid map using
Dempster’s rule of combination shown in equations 2 . . . 4.

mM,k(O) =mM,k−1⊕S,k(O) (2)
mM,k(F ) =mM,k−1⊕S,k(F ) (3)
mM,k(Ω) =1−mM,k(O)−mM,k(F ) (4)

The mass mS,k is measured by an individual scanner S at
time k (F = {f} ,O = {o}).

C. Dynamic Estimation

A grid based dynamic detection is based on the assumption
that a laser beam aimed at a static object should always end
in the same cell. This assumption holds when an accurate
vehicle odometry is available for map compensation. Using
the occupancy grid map as a reference for all measurements
accumulated until time slot k the current measurement can
be matched against the map to enable two assumptions of
the dynamic state: On the one hand a laser beam that ends in
an occupied cell is an evidence of a static measurement. On
the other hand a beam that ends in a free cell is an evidence
of dynamic measurement (see equation 5).
The dynamic detection in occupancy grid maps is extensively
studied with respects to the used grid mapping algorithm.
Both [2] and [3] use conflicting measurements in occupancy
grids. In contrast, [5] uses the same assumption of conflicting
measurements in evidential grids. To validate the assumption
of a dynamic measurement, it is useful to generate an
estimation that a cell is not occupied by a dynamic object.
These results can be integrated in a Dempster Shafer belief
mass. For the dynamic estimation we define a second power
set 2∆ = {∅, {d}, {d}, {d, d}}, where d is the state of a
dynamic measurement and d is the state of a contradictory
measurement. Representing dynamic measurements of the

environment, we create a separate grid map layer Layer2

that includes all dynamic measurement. The belief masses
mS,k(D) and mS,k(D) describe a measurement of the dy-
namic and the not dynamic state (D = {d}, D = {d}). For
the term mS,k(D) the motion detection algorithm proposed
in [5] is used here. Equations 5 and 6 show the measurement
of a conflict estimated to be dynamic as proposed in [5].

C1 =mS,k(O) ∗mM,k−1(F ), when f turns to o (5)
C2 =mS,k(F ) ∗mM,k−1(O), when o turns to f (6)

Where C1 describes a cell which is currently occupied with
a dynamic object (new dynamic). C2 describes a cell which
is freed by an moving object (old dynamic). Every measure-
ment that falls on a free cell could be estimated as dynamic
but due to discretization errors and noisy measurements we
need an estimation that the cell is not dynamic D. For every
cell we take the state of neighbouring cells into account:

mS,k(D) =C1 (7)

mS,k(D) =α
∑
n∈N

mMn,k−1(O) (8)

The mass belief function for mS,k(D) can be described as
the sum of all neighbour cells (n ∈ N ) where α is a nor-
malization constant and N is the set of relevant neighbours.
We propose to take the belief of all eight neighbouring cells
as the noise measurement sum for belief mass mS,k(D).
For the belief mass of mS,k(D) we only take the conflict
measurement C1 into account, because C1 describes where
the moving object is currently located.
Before we can combine the belief masses of Layer2, the
movements of all detached grid cells have to be predicted.
Therefore this update is separated from the static environ-
ment beliefs and is discussed in section IV-D.

IV. DYNAMIC CLUSTER TRACKING

At this stage we have introduced a layered occupancy
grid map built from several sensors. Layer1 for the static
environment determine a cell is occupied or free and Layer2

for the dynamic environment estimating the belief for a
dynamic and a not dynamic cell. In this chapter we only
refer to Layer2 in order to track objects from the dynamic
estimation of the measurement grid map.
To generate features from the dynamic estimation we build
clusters for all dynamic cells using the db− scan algorithm
[12]. Each cluster consists of a minimum of two cells each
containing two beliefs: one for the dynamic and one for
the not dynamic belief. Once a dynamic belief for each cell
cluster is estimated, it can be used to set up object tracks. For
object tracking without dynamic information every measured
feature could be relevant and needs to be mentioned. In
contrast dynamic cell clusters, allow us to track the dynamic
environment only. The track management, object model and
association strategy are described in this section.
A dynamic model and tracking algorithm is required for

estimating directions and velocities. Cell clusters are a viable
starting point. Vu [2] tracks dynamic clustered cells by



Fig. 2: Object model in grid coordinates uses clustered
dynamic cells (L). Grid map is rotated around ego vehicles
course angle.

using a Kalman filter and interactive multi model (IMM)
algorithm. In contrast, [13] and [14] use particle filters. The
state of an object tracked with particle filters is represented
as multiple hypothesis (i.e. particles). Each particle contains
a state hypothesis of the tracked object and its weight. The
object state of a particle filter is strongly modified by the
weights of its particles. As an advantage over other tracking
algorithms, particle filters are able to track non-linear state
spaces and noise can be modeled in any required form. We
use particle filters as an experimental approach because they
are easy to implement and offer the ability to track multiple
object hypothesis in one filter.
In the next subsections we introduce the object model, a track
management strategy, an association strategy with JPDA
and an approach for accumulating dynamic measurements
in objects.

A. Object Model

Taking advantage of the clustered dynamic cells proposed
in the last section, particle filters are used to represent an
object. Particles that track cells as proposed in [13] [14] have
the property of converging on the measurement. This is no
disadvantage as long as the whole object is visible in the
majority of measurements, but it suffers when objects are
partly occluded [15]. A box representation of the object to
be tracked is used by [16]. In an object box representation
all measurements have to be fitted to a box. But a box
might not be a good model for every situation. The state
of a particle is proposed as s(k) = (L, x, y, ẋ, ẏ, ω) where
L = {(c1), (c2), . . . (cn)} is the set of clustered dynamic
cells describing the associated measurement (see figure 2).
We use a Constant Turn Rate and Velocity (CTRV) model
as state representation assuming the velocity (ẋ, ẏ) and the
yaw rate ω are constant. A particle filter state is strongly
modified by the particle weights. The weight of a particle is
estimated by the matching of the particle’s object hypothesis

and current measurements.

p(zjk|x
(p)
t ) = λ · |Lzjk ∩ Lx(p)

t
| (9)

The above equation is a matching function calculating the
cluster (L) overlap of the object hypothesis of a particle x(p)

t

and a measurement zjk. This weighting function could be
described as sum over all dynamic beliefs of the current
measurement grid cell, which matches with the cell cluster
set L of the particle normalized by the constant λ.
We combine all particles representing the same object in a
particle set (Pf ) in order to build a free form object model∑
p∈Pf

L (footprint in figure 3). Particles are initialized
by a single dynamic cluster (L). A motion prediction step
is performed in order to match the position of the particles
to the new measurement. If all particles of a particle set are
combined, they can be used as a free form model, namely
footprint Fp (see figure 3). The fooprint combines all
particles with its cell cluster L to an object representation in
grid coordinates. The resulting object state is a set of cells

Fig. 3: sequential build of free form object model using
particles. In t=2 new particles p4 and p5 are inserted to
enable the filter to track the new object shape.

described by a hit counter. This hit counter is incremented
if the center of a tracked cell fits into an detached grid cell.

B. Track Management

The proposed tracking approach encompasses the follow-
ing track management features:
• initialization of tracks using clustered dynamic cells
• growing and shrinking of particle sets (i.e. adding or

removing new cluster estimations to the set).
• deletion of divergent particle sets

Fusion of two tracks tracking the same object is beyond the
scope of this paper.
A new particle set is set up if too few particles exist in the
association region. To prevent false positives, the cell cluster
used for initialization has to pass the constraint BD ≥ BD,



where (BD) is the mean dynamic belief. As a first guess, all
particles are initialized with the original dynamic cluster and
a velocity in the interval [Vs,−Vs]. Only velocities within
this interval can be tracked.
Equation 10 describes the change of the particle set size
(|Pf |) by the growing and shrinking process.

|Pf | =
{|Pf |+ δ ∗ (|Pmax| − |Pf |), if β ≥ lg
max(|Pmin|, |Pf | − γ), if |CPos| < ls

(10)

δ =| |Cmeas| − |c|
|c|

|

1) Growing: A particle filter once initialized by one dy-
namic cluster may describe multiple cluster representations.
So new clusters should be inserted if the original shape of
dynamic measurements does not match any more. Since we
do not want to modify existing particles, we propose to add
new particles to the particle filter. Therefore each particle
filter has a maximum size |Pmax| but in the initial state all
particle filters are able to grow or shrink. If a newly added
cluster matches well it will replace other particles, which do
not match anymore. That is a result of the survival of the
fittest methodology of the used SIR particle filter (only the
best particle are drawn). In [17] a similiar aproach for grow-
ing and shrinking of particle filters using KLD−sampling
algorithm is described.
A particle set should grow with a associated measurement
that have more clustered cells |Cmeas| than the mean cluster
size |c| in the particle set (see equation 10). A new measure-
ment should only be added to the set if it matches the track
well β ≥ lg . Where β is the assignment probability that a
track matches the measurement. This constraint avoids that
wrong associations can break the object state.

2) Shrinking: In contrast to the growing process the
shrinking process only needs to be called once for each
particle filter. We define a minimal |Pmin| and maximal
|Pmax| amount of particles for each particle set. |Cmeas| is
the cluster size of the measured cluster associated with the
track. Let |c| be the mean cluster size of the particle set Pf .
The assignment probability β describes the likelihood that
Pf is associated with Cmeas. The shrinking of a particle set
is triggered if the association probability is less than a certain
threshold ls. Additionally the growing of the particle filter is
governed by the threshold lg .
Recall that the positional covariance matrix CPos describes
an ellipse which expresses the shape of the corresponding
point cloud. Since shrinking is applied after all measure-
ments have been associated, we have to compare against the
eccentricity |CPos|. The amount of particles in a particle set
(|Pf |) is changed adaptively with equation 10. The growing
/ shrinking function is applied at the weighting step of each
particle filter.

3) Deletion: If any tracked object is not observable any-
more, the particle set should be deleted. The deletion can be
triggered by two conditions as listed in table II. A particle
filter should be deleted if the position of the tracked object
PfPos is not in the perception area of the map M . A second

Condition 1 Condition 2
M ∩ PfPos = ∅ |CPos| ≤ e

TABLE II: deletion condition

condition for deletion of an established track is passed if
the filter has lost track of an object. This behaviour can be
determined easily if the particle filter diverges.

C. Particle Joint Probability Data Association

When multiple objects have to be separated from clutter
object track to measurement association is a challenge [18].
The JPDA can be used to replace association thresholds by
an association likelihood. We use the approach proposed in

Algorithm 1: gated JPDA particle filter
Data: dynamic clusters as measurement mk,
multiple targets τ
Result: particle weights w(i)

k , a set of association
probabilities A

initialize A with an occlusion association for each
element in τ
//build associations for each target in τ
for t = 1 . . . τ targets do

for every measurement j = 0 . . .mk do
if j lies in validation region of t then

add ptj(z
j
k|xt) to A ;

end
end

end
for t = 1 . . . τ targets do

for every i ∈ A associated measurement do
calculate βit =

∑
θit
P (θ|Zk) ;

sum over all joint association events where the
event θit occurs ;
for every particle p,. . .N do

w
(p)
k =

∑A
i=0 β

i
t ∗ p(z

j
k|x

(p)
t,0 )

end

wpk =
w

(p)
k∑N

p=1 w
(p)
k

end
end

[15] based on particle filters. We combine this approach with
a simple gating technique similar to the one proposed in [19]
in order to avoid exponential complexity of the unmodified
method.

ptj(z
j
k|xt) =

∑
zjk∈Fp(xt)

c(v) (11)

P (θ|Zk) =γ ·
∏
θjt

ptj(z
j
k|xt) (12)

In the JPDA framework, a joint association event θ is a set
of pairs (j, i) ∈ {0 . . .mk} × {1, . . . , τ}. Each θ uniquely
determines which feature is assigned to which object [15].



(a) video view as reference for the urban scenario (b) dynamic measurement grid map (c) occupancy grid map with tracked object as
footprint (red cell cluster)

(d) video view as reference for the highway scenario (e) dynamic measurement grid map (f) occupancy grid map with tracked
object as footprint (red cell cluster)

Fig. 4: Grid based tracking and dynamic detection in an urban and highway scenario. The dynamic measurement grid shows
yellow for the dynamic belief mass and purple for the not dynamic belief mass.

The association likelihood of a measurement to a track can
be calculated by matching the track’s footprint Fp with the
measured dynamic cluster zjk. This is calculated in equation
11, where c(v) is the value of the hit counter for the
corresponding cell v. Please note the difference between the
association likelihood (ptj(z

j
k|xt)) and the weighting function

of a particle (p(zjk|x
(p)
t )). ptj(z

j
k|xt) describes the matching

between a measurement and a tracked footprint. In contrast
p(zjk|x

(p)
t ) only provides a measure that a particle matches

the measurement. The probability of a joint association event
P (θ|Zk) is defined in equation 12 as the normalized product
over all association likelihoods which contain event θ. In
algorithm 1 we first calculate an association multi map
A mapping each target to multiple measurements with an
association probability ptj(z

j
k|xt). Then for each associated

measurement the assignment probability βit is calculated and
used to weigh each particle.

D. Accumulating Dynamic Estimation for each Object

Validation of resulting tracked objects can be achieved
by accumulating the dynamic belief of a measurement
(mS,k(D)) in a separate belief mass determined by the
dynamic belief of an object. The belief mass mO,k(D) is

stored as an object attribute. The dynamic belief for an object
is updated using the associated measurement (mS,k) of a
cluster. We use the average of the dynamic beliefs of all
relevant cells as the dynamic belief of a cluster.

mO,k(D) =mO,k−1⊕S,k(D) (13)

mO,k(D) =mO,k−1⊕S,k(D) (14)

Using Dempster’s rule again to combine the measured mass
with the prior dynamic estimation, a dynamic belief for each
object can be maintained.

V. RESULTS

The proposed tracking algorithm and dynamic accumu-
lation was tested on a vehicle equipped with two Ibeo
LUX laser scanners. The environmental modelling using grid
maps and the proposed tracking algorithm are illustrated for
two different scenarios. Figure (4a, 4b, 4c) shows an urban
environment with an ego velocity about 50 km/h. Figure (4d,
4e, 4f ) shows a highway scenario with ego velocities about
160 km/h.
The Dempster Shafer belief masses are shown with the
colours green for free, red for occupied and blue for the
unknown belief mass (see figure 4c and 4f). The dynamic



measurement (yellow) shown in figure 4b and 4e is strongly
dependent on the estimated free space. With a higher belief
of the free mass the estimation of the dynamic measurement
is growing proportionally. This behaviour has the benefit
that object close to the ego vehicle gain a higher dynamic
belief. The colour purple shows the belief of a not dynamic
measurement.
The red cluster (in figure 4c and 4f) represents the tracked
object footprint. The yellow line describes the velocity
vector of the vehicles. The footprint of the overtaking
vehicle in 4f consist of all shapes ever seen by one scanner.
The initial shape of the object is only the side of the vehicle.
Using the proposed model, the object shape grows with new
measurements (if the back of the car is seen). The proposed
particle filter is able to track any shape of an object.
We test our tracking approach against an algorithm which
is using an icp based contour tracking with kalman filters.
A short comparison is shown in the attached video file. The
track created by the Kalman filter approach is set up earlier
than in the grid based algorithm. This is caused by the filtered
free space estimation in front of the object. In the urban
scenario (4a, 4b, 4c) the proposed tracking produces less
ghost object from the road boundary.
The algorithm was tested offline on an Intel Core i7 with
2.8 GHz. The map generation calculation time is about 3
ms. The tracking algorithm including clustering and some
debug outputs is about 10 ms.

A. Implementation Details

The cell size of the used occupancy grid is 20 cm and we
built the occupancy grid of size of 102.4 m x 102.4 m. We
statically allocate memory for all particles ever used in the
algorithm up to a maximum of 8000 particles. Each particle
filter starts with 375 particles (|Pmin|) and is able to grow
to a size of 500 particles (|Pmax|).

VI. CONCLUSION AND FUTURE WORK

In this paper an environmental modelling technique for
vehicles equipped with multiple laser scanners is presented.
We propose to build a layered occupancy grid map to extend
the model of a static environment with information produced
by dynamic objects. These dynamic information could be
clustered and tracked using particle filters. As free form
object model, multiple particles generate a free form object
shape. The implemented object tracking should show the
feasability of dynamic grid cells. As mentioned in [5] the
two types of cell conflict C1 and C2 could be used for
estimating the direction of the motion. A direction could
be useful for a faster track initialization of the used particle
filter algorithm. The initial state of each particle could be
initialized by a first estimation of the direction in order to
improve the convergence speed of the particle filter.
We plan to compare the implemented particle filter tracking
against a Kalman filter tracking comparing initialization time
and position error.
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