
Masterarbeit
Jan Raddatz

Evaluation based design of parallel simulation strategies for in
vehicle networks

Fakultät Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

Jan Raddatz

Evaluation based design of parallel simulation strategies for in
vehicle networks

Masterarbeit eingereicht im Rahmen der Masterprüfung

im Studiengang Master of Science

am Department Informatik

der Fakultät Technik und Informatik

der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Korf

Zweitgutachter: Prof. Dr. Fohl

Eingereicht am: 2. Februar 2016

Jan Raddatz

Thema der Arbeit
Evaluation based design of parallel simulation strategies for in vehicle networks

Stichworte
Conditional Null Message, Conservative Synchronization, Discrete event simulation DES,

Distributed Simulation, Multicore system, Null Message, Partitioning, Parallel discrete event

simulation, PDES, Simulation

Kurzzusammenfassung
Diskrete Event basierte Simulationen haben sich zu einem weit verbreiteten Werkzeug zur

Auslegung und Entwicklung von Fahrzeugnetzwerken entwickelt. Netzwerke im allgemeinen

und Fahrzeugnetzwerke im Besonderen sehen sich mit ständig wachsender Komplexität kon-

frontiert. Dies führt unausweichlich zu immer weiter steigenden Simulationslaufzeiten. Diese

Arbeit präsentiert das Design und die Entwicklung von parallelen Scheduling Strategien um

die Simulationslaufzeiten zu verkürzen.

Jan Raddatz

Title of the paper
Evaluation based design of parallel simulation strategies for in vehicle networks

Keywords
Conditional Null Message, Conservative Synchronization, Discrete event simulation DES,

Distributed Simulation, Multicore system, Null Message, Partitioning, Parallel discrete event

simulation, PDES, Simulation

Abstract
Discrete event based simulations become a wide spread tool in constructing and developing in

vehicle networks. Networks in general and in vehicle networks in particular face a steadily

increasing complexity. This results inevitably in increasing simulation runtimes. The main

contribution of this work is the design and development of parallel scheduling strategies in

order to speed up simulation runtimes of in vehicle networks.

Contents

1 Introduction 1

2 Theoretical foundations and related work 3
2.1 Simulation . 3

2.2 Classi�cations . 4

2.3 Time in simulation . 5

2.4 Discrete event based simulation . 5

2.5 Parallel discrete event based simulation . 7

2.5.1 Basic idea behind PDES . 7

2.5.2 Challenges in PDES . 8

2.6 Synchronization . 9

2.7 Optimistic Algorithms . 9

2.7.1 Time Warp Algorithm . 10

2.7.2 Time warp implementation . 11

2.7.3 Global virtual time . 11

2.7.4 Optimization of optimistic algorithms 12

2.7.4.1 Reducing memory footprint 12

2.7.4.2 Preventing overly optimistic execution 12

2.7.4.3 Improved cancellation . 13

2.7.5 Performance estimation of optimistic algorithms 13

2.8 Conservative Algorithms . 14

2.8.1 Null Message Algorithm . 14

2.8.2 Optimization of conservative algorithms 18

2.8.2.1 Conditional null message . 18

2.8.2.2 Carrier null message . 19

2.8.2.3 Conservative time windows 20

2.8.2.4 Null message cancellation 21

2.8.2.5 Demand driven . 21

2.8.2.6 Path lookahead . 21

2.8.3 Performance estimation of conservative algorithms 22

2.9 Time-Triggered Ethernet . 22

2.9.1 Communication protocols . 23

2.9.1.1 Deterministic Time-Triggered (TT) tra�c 23

2.9.1.2 Event-Driven or rate-constrained (RC) tra�c 24

2.9.1.3 Best-e�ort (BE) tra�c . 24

iv

Contents

2.9.2 Common time base . 24

3 Problem Analysis 26
3.1 Simulation model . 26

3.2 Data�ow analysis . 29

3.2.1 Cyclic message tra�c . 29

3.2.2 Rate constrained message tra�c . 31

3.2.3 Time triggered message tra�c . 31

3.2.4 Best e�ort message tra�c . 31

3.3 Parallel potential analysis . 32

3.3.1 Analytical analysis . 32

3.3.1.1 The e�ciency criterion . 32

3.3.1.2 Applying the e�ciency criterion 37

3.3.2 Empirical analysis . 39

3.3.2.1 Choosing a partitioning strategy 39

3.3.2.2 Parallel potential measurement 41

3.4 Analysis conclusion . 42

4 Optimization concept 43
4.1 Generic optimization . 43

4.1.1 Scheduling algorithm selection . 43

4.1.2 Conditional null message algorithm basic approach 44

4.1.3 Increasing parallelism . 47

4.1.4 Final conditional null message algorithm approach 49

4.1.4.1 Broadcast earliest internal event 49

4.1.4.2 Calculate ECOT Matrix . 50

4.1.4.3 Calculate min ECOT Array 50

4.1.4.4 Calculate phase 2 . 51

4.1.4.5 Final algorithm . 52

4.2 Domain speci�c optimization . 53

4.2.1 Weak point of the generic optimization 53

4.2.2 Problem-solving approach . 53

4.2.3 Basic thoughts towards a generally applicable domain speci�c schedul-

ing strategy . 54

4.2.3.1 Asymmetric event generation 55

4.2.3.2 Processing delays . 56

4.2.3.2.1 Fixed processing delays 56

4.2.3.2.2 Variable processing delays 56

4.2.3.2.3 Keeping track of events 58

4.2.4 Final domain speci�c optimization approach 58

4.2.4.1 Scheduler architecture . 58

4.2.4.2 Obtaining a global view on all possible external events . . . 59

4.2.4.3 Event tracking . 60

v

Contents

5 Concept implementation 62
5.1 The OMNET++ parallel simulation subsystem 62

5.2 The conditional null message algorithm scheduler 63

5.2.1 Basic approach implementation . 63

5.2.2 Distributed lookahead calculation . 64

5.2.3 Basic synchronisation . 66

5.2.4 Increased parallelism implementation 66

5.3 Domain speci�c optimization realization . 68

5.3.1 The TTE event pipeline . 68

5.3.2 The CAN event pipeline . 68

5.3.3 Exploiting the CAN event pipeline . 69

5.3.4 Implementation of the domain speci�c approach in Partition 1 70

6 Test 73
6.1 Veri�cation of operation . 73

6.2 E�ciency Comparison . 73

6.3 Speedup Comparison . 77

6.4 Why the domain speci�c approach lacks in performance 78

7 Final 80
7.1 Summary . 80

7.2 Conclusion . 82

7.3 Outlook . 83

Glossary 90

vi

Listings

5.1 Calculating and broadcasting local lookaheads 64

5.2 Calculating and broadcasting local lookaheads 65

5.3 Basic synchronisation algorithm. 66

5.4 Final earliest input time (EIT) algorithm implementation including phase 2

calculation according to section 4.1.4.5. 67

5.5 Intercepting CAN events arriving at the transform module. 70

5.6 Intercepting CAN events arriving at the transform module. 71

5.7 Reporting event ID changes to the scheduler. 72

vii

1 Introduction

The Communication over Real-Time Ethernet Group (CoRE)
1

is conducting research on com-

munication solutions for time-critical applications using the Ethernet technology. New com-

munication concepts are developed and analysed by using discrete event based simulations in

OMNET++
2
.

Discrete event based simulations become a wide spread tool in constructing and developing

in vehicle networks. Networks in general and in vehicle networks in particular, face a steadily

increasing complexity [1, 2, 3]. This results inevitably in increasing simulation runtimes. As a

consequence, simulation based development processes are slowed down [4, 5].

A possible solution to this problem lies in distributing the processing load by splitting up

the simulations into several logical partitions and processing them in parallel. Computer

scientists are working in this �eld of research since the early 1970s. Before the recent success

of multicore systems, researchers concentrated on distributing the simulation partitions over

several sequential systems, in order to decrease simulation runtimes. The recent advance

of multicore processors has once again brought parallel simulation into the focus of current

research [5, 6].

A major di�culty in using parallel simulation is that it does not automatically result in faster

execution times [5, 6]. Even when done right, not every simulation can pro�t from parallel

simulation [7]. The success of using parallel simulation heavily depends on the selection of

parallelization technology as well as the underlying simulation’s parallel capabilities.

The main goal of this work is to develop parallel simulation strategies that to speedup

in vehicle network simulations. The approach should be generally applicable to a range of

simulations similar to the ones investigated as part of this work. Therefore, two typical in

vehicle network simulations, developed by the CoRE group, were chosen for investigation.

Since parallel simulation is a subject of scienti�c research since the 1970s, a lot of parallel

simulation approaches have been developed in the past. However, since today there is no

general approach towards parallel simulation [8]. Therefore this work starts with acquiring the

theoretical foundations and a thorough evaluation of the current state of research in parallel

1

http://core.informatik.haw-hamburg.de/

2

https://omnetpp.org/

1

1 Introduction

simulation. The �rst aim is to select an existing parallel simulation approach as basis for further

optimizations. The next step is an analysis of the two simulations and their parallel potential.

Based on the results of the analysis results and the parallel potential, scheduling strategies

will be developed. The scheduling strategies will then be implemented for the OMNET++

simulation system.

This work �nishes with a validation of correct operation and a performance benchmark

against the sequential and null message algorithm.

2

2 Theoretical foundations and related work

This chapter gives an introduction to the theoretical foundations that this master thesis is

based on. It starts with an introduction to simulation in 2.1 followed by a brief overview of

existing simulation classi�cations in 2.2. Di�erent time domains will be de�ned in section

2.3. Discrete event based simulation (DES) will be explained in section 2.4, followed by an

introduction to parallel discrete event based simulation (PDES) in section 2.5. Section 2.6 will

give an overview of existing synchronization algorithms needed for conservative parallelism.

Section 2.7 presents the optimistic synchronization approach and section 2.8 presents the

conservative approach. It will also give a detailed explanation on how the most commonly

used null message algorithm (NMA) works. The NMA will serve as reference algorithm for

performance optimizations done in this work. Detailed overviews on the topic of PDES are

given in summaries in [8, 9, 10, 11, 12, 13, 14, 15, 16]. These summaries were created by

di�erent computer scientists over time with the objective to sum up the current state-of-the-art

in research. This chapter closes with a brief overview of Time-Triggered Ethernet (TTE) in

section 2.9.

2.1 Simulation

Simulation is the imitation of the operation of a real-world process or system over time [17].

Simulating a system requires the creation of an appropriate systems’s model �rst. A model is a

representation of a physical or theoretical system. The model may be mathematical, descriptive,

logical, or some combination of these elements [9]. Models are often abstract and simpli�ed

representations of their real counterparts but their behaviour in all relevant aspects conforms to

the real system. Since reality can not always be exactly reproduced in simulation, a simulation

might have a deviation to the system [10]. This will result in inaccuracies of the simulation

results which must be considered when using them. The purpose of simulation is to gain

insight about a systems’s behaviour in certain situations without having the real system at

hand. It also makes it possible to do the experiments which could be too dangerous or might

damage the system system [10]. Simulations are often used to verify or validate a system

3

2 Theoretical foundations and related work

during development process before crafting the real system in order to detect failures early

during development process. Typical use cases for simulations according to [10] are:

• Optimization of system behaviour (for example by bottle neck detection)

• Decision aid during system conception

• Prediction of system behaviour

• Veri�cation of system behaviour

• Validation of theories and system behaviour

• Animation of system behaviour

2.2 Classifications

Since the examination of a systems’s temporal behaviour plays an important role for most

dynamic systems, the modelling of time based processes plays an important role in simulation

[10]. This lead to the introduction of di�erent simulation classi�cations shown in Figure 2.1.

The two major classi�cations are continuous and discrete simulations.

simulation

continuous discret

time-controlled event-orientated

event-driven activity-driven process-driven transaction-driven

Figure 2.1: Simulation classi�cations [10].

In continuous simulation one assumes, that the model is changing its state continuously

over time. Typical examples are the simulation of star systems or the simulation of electrical

circuits and control loops. Common simulation system implementing continuous simulation

are MathWorks MATLAB and Simulink.

4

2 Theoretical foundations and related work

Discrete simulation models change state at discrete points in time. The simulation system

OMNET++ and therefore, all simulations developed by the CoRE research group are based on

DESs. For this reason, this work will only attend to DESs. A detailed overview and further

explanations on di�erent simulation classi�cations are given in [10].

2.3 Time in simulation

Time is an essential part in simulating the temporal behaviour of dynamic systems. This

section introduces two important time domains, that will be used throughout the remainder of

this work. The simulation time denotes the time, that is passing inside the simulation, whereas

Simulation

tsim

treal

user

Figure 2.2: Time domains in simulation.

real time denotes the time, that is passing outside the simulation as shown in �gure 2.2. Both

time domains are de�ned from a user’s point of view. For example simulating the behaviour of

a star system for a timespan of �ve years, might take 5 minutes of real time, whereas for the

simulation, �ve years of simulation time pass from a user’s point of view.

2.4 Discrete event based simulation

In DES, the model is changing its state at discrete points in time. These discrete points in time

are modelled as events, hence the name DES. Processing of an event happens immediately

without time costs. Between two discrete points in time, there will be no change in state. For

this reason, the simulation can, in contrast to continuous simulations, directly jump in time

from one event to the next event. Figure 2.3 gives an example of discrete simulation time

advancement. In this example, three events are shown with execution timestamps at t = 1,

t = 3 and t = 10. Therefore, the simulation jumps to t = 1, processes the �rst event and then

5

2 Theoretical foundations and related work

t=1 t=3 t=10
t

Figure 2.3: Advance in simulation time by jumping from one discrete event to the next.

advances to t = 3 in order to process the second event. At last it will advance to t = 10 and

process the third event. When there are no more events left, the simulation terminates.

Events must be processed in time correct order. Processing events in time correct order is

realized by an event scheduler. An event scheduler possesses an event queue, the future event

set (FES) that stores events in time correct order. The event scheduler will always remove the

event on top of the FES, that is the event with the smallest timestamp and process it. Processing

an event might result in new events that must be added to the FES and carry a timestamp

greater or at least equal to the currently processed event. In case an event timestamp is smaller

t=1 t=3 t=10
t

t=5

Figure 2.4: Causality violation caused by event at t=10 by scheduling a new event at t=5 which

is in the past.

than the currently processed event, the newly created event is scheduled in the past as shown

in Figure 2.4. This is called a causality violation because the newly created event at t = 10

might change the past, thus invalidating the results of the event at t = 10. In case of a causality

violation, the simulation must abort with an error.

The growth in model complexity leads to ever increasing simulation times [11]. In the

past years this was compensated by using new processors with increased clock frequencies.

Lately the clock frequency of modern processors does not signi�cantly increase due to physical

limitations. For this reason, the development of modern processors has stepped into the era

of multi-core [18]. Since the whole event processing is based on a purely sequential process,

classical DESs can not make use out of modern multi-core processors and do not bene�t from

an increased amount of processing cores. In essence, this means, processing power stagnates

6

2 Theoretical foundations and related work

for classical DESs and simulation engineers will run into performance barriers, that used to

be overcome in the past by replacing old processors with newer ones with increased clock

frequencies.

2.5 Parallel discrete event based simulation

In order to increase simulation performance and to decrease simulation times, computer scien-

tists began to look for new ways to overcome the hardware induced performance limitations

(see 2.4). The basic idea is, to parallelize a simulation and thus distribute the simulation load

over several processing units.

This section gives an introduction to the basic idea behind PDES in section 2.5.1. The

challenges of parallel simulations are discussed in section 2.5.2.

2.5.1 Basic idea behind PDES

A B

Model

A

Partition 1

B

Partition 2

CPU

Core 1 Core 2

Figure 2.5: Model partitioning into two separate partitions and assignment to two separate

processor cores.

7

2 Theoretical foundations and related work

The basic idea of parallel simulation is to split the model into independent parts that run in

parallel as shown in Figure 2.5. These parts are called partitions. The process of splitting a

model into independent parts is called partitioning. Each partition is running inside its own

simulation system instance and is usually assigned to a dedicated processing unit. The di�erent

partitions can be realized as separate threads or most commonly as separate processes. In

OMNET++ each partition is running inside its own process. Communication between partitions

is realized through interprocess communication (IPC).

2.5.2 Challenges in PDES

As stated by [8], the implementation of PDES is di�cult. The reason becomes evident, when

taking a look at the example in Figure 2.5. Both partitions are running inside their own

simulation system. Each simulation system contains its own event scheduler and its own

FES. In order to enable communication between both partitions, a communication system

is established between both simulation systems to make the event exchange possible (see

2.5.1). As described in 2.4 it is crucial, that events are processed in time correct order. With

both partitions working independently, this paradigm might get violated. To demonstrate the

Partition 1

Partition 2

t

t

e1 e2 e3 e4 e5

e2

e6

e3e1

Figure 2.6: Event rising over time in partitions 1 and 2 - black arrows denote the currently

processed event.

problem, the FES of Partition 1 contains two times as many events as the FES of Partition 2.

This is shown in Figure 2.6. Furthermore, the following assumptions are made:

• Both partitions start at the same time.

• Both partitions process events at the same speed.

• Processing an event takes an equal amount of time for both partitions.

Since the event density inside FES 1 is two times higher than in FES 2, the e�ort needed to

advance Partition 1 the same amount in time as Partition 2, is two times higher. For this reason,

it will take Partition 1 two times longer in real time to arrive at the same point in simulation

8

2 Theoretical foundations and related work

time. In other words, Partition 2 will advance in simulation time much faster than Partition

1. As shown in Figure 2.7 processing of e3 in Partition 1, causes a new event being sent to

Partition 1

Partition 2

t

t

e1 e2 e3 e4 e5

e2

e6

e3e1

Figure 2.7: Causality violation caused by partition 1 sending an event to partition 2, which

advanced in time way ahead of partition 1 - black arrows denote the currently

processed event.

Partition 2. This new event is scheduled between e1 and e2 in the FES of Partition 2. Since

both partitions process events at the same speed, Partition 2 already processed its third event.

That means, the newly created event from Partition 1 lies in the past of Partition 2. Therefore,

Partition 1 produced a causality violation.

To prevent causality violations and make parallel simulation practicable, some kind of time

management is needed that coordinates and synchronizes the partitions.

2.6 Synchronization

Synchronization denotes the process that prevents causality violations from occurring or

corrects them in PDES. Synchronization algorithms can be broadly categorized into two major

categories: optimistic algorithms and conservative algorithms [19, 20]. The performance of

PDES depends on a wide variety of factors. These include: the partitioning, the communication

overheads of the parallel platform (both hardware and software overheads), and the overheads

of the parallel synchronization algorithm [19]. Depending on the models architecture, a

conservative algorithm might be more applicable or faster than an optimistic approach and

vice versa. Therefore, the decision for one or another approach is not made easy.

2.7 Optimistic Algorithms

Optimistic algorithms do not actively prevent causality violations. Each partition will process

events as fast as possible. Whenever a partition detects a causality violation, which is caused

by receiving an event with a timestamp smaller than its current simulation time, the partition

must perform a roll back of the simulation results and states. This roll back is also known as

9

2 Theoretical foundations and related work

time warp. The partition then restarts the simulation and reprocesses the events in timestamp

order [12].

2.7.1 Time Warp Algorithm

One of the �rst optimistic algorithms in parallel simulation was published by D. Je�erson in

1982 [21, 22]. Figure 2.8 shows Partition 1 causing a causality violation by sending an event to

Partition 1

Partition 2

t

t

e1 e2 e3 e4 e5

e2

e6

e3e1

Figure 2.8: Causaltity violation caused by partition 1 (see also 2.4) - black arrows denote the

currently processed event.

Partition 2. The timestamp of the event is way behind the current simulation time of Partition

2. When Partition 2 detects the causality violation, the time warp algorithm performs a roll

back by resetting the partition state back to what it was at the time of the newly received event

as shown in Figure 2.9. This roll back is called time warp, hence the name time warp algorithm.

Partition 1

Partition 2

t

t

e1 e2 e3 e4 e5

e2

e6

e3e1

Figure 2.9: Time warp algorithm resets the model state to the point in time that is denoted by

the newly received events timestamp - black arrows denote the currently processed

event.

After roll back, the partition restarts simulation from that state on [13].

Although optimistic approaches are considered to be able to exploit a higher degree of

parallelism [12, 23], they su�er a phenomena that poses a negative threat on simulation

performance. Depending on the underlying model, time warps might initiate further time

warps in neighbouring partitions which in turn might again cause new time warps [11]. This

e�ect is called cascading time warps. Simulations experiencing this e�ect, will have a severely

reduced simulation performance [24, 25]. The simulation performance might even drop below

10

2 Theoretical foundations and related work

that of its sequential counterpart. A performance analysis of time warp simulation with

cascading rollbacks is presented in [25].

Besides the negative e�ect of time warps on performance, there is another important aspect

to consider before using an optimistic algorithm. Optimistic algorithms are considered to be

too complex or impractical to implement in practice [26]. The implementation of the time

warp mechanism takes a considerable amount of e�ort. Simulations and simulation systems

that were built without parallel simulation in mind, lack the mechanisms to realize roll backs.

Using third party simulation libraries might make it impossible to create roll backs due to the

possible lack of source code.

2.7.2 Time warp implementation

One approach to implement time warps is presented in [11, 22]. The authors describe the

implementation of time warps by using negative events. For each event a negative counterpart

exists. If both events happen to be in the same FES, they annihilate each other. In order to

perform a time warp, the necessary negative events will be processed as shown in Figure 2.10.

Partition 2 t
e2 e3e1

e3‘e2‘

Figure 2.10: Performing a time warp by processing the negative events e′3 and e′2 to events e3
and e2. After reset, the simulation continues with the newly received event that

caused the causality violation - black arrows denote the currently processed event.

2.7.3 Global virtual time

An important concept of the time warp is the introduction of global virtual time. Global virtual

time is a lower bound on the timestamp of any future time warp that might occur in optimistic

simulation. Time warps are triggered by receiving events with timestamps in the past. For this

reason, the smallest simulation time over all partitions gives a value for the global virtual time.

In [22] it is proved that rollbacks will not go further back than the global virtual time. Therefore,

this discovery is exploited in many optimization approaches of optimistic simulations.

11

2 Theoretical foundations and related work

2.7.4 Optimization of optimistic algorithms

Optimistic algorithms su�er from two major problems. Cascading time warps have a negative

impact on performance. The time warp algorithm requires extra memory to keep track of the

simulation history to perform a time warp on detection of a causality violation. Therefore, two

major branches in research try to reduce the occurrence of cascading time warps and to �nd

e�cient ways to reduce the memory footprint.

The remainder of this section presents current optimization approaches in optimistic algo-

rithms grouped by optimization strategy.

2.7.4.1 Reducing memory footprint

Optimistic algorithms require a considerable amount of memory to safe model states and to

keep a history of previously processed events. These informations are needed to perform a time

warp in case a causality violation is detected. Without optimizations in memory management,

the simulation will consume more and more of the limited available memory [12].

One strategy known as fossil collection deals with freeing no longer needed history infor-

mation. It uses the global virtual time to free all the history information that is older than the

global virtual time [12, 16]. As stated in 2.7.3 the simulation will never roll back to a simulation

time earlier than global virtual time. Therefore, all history information with a timestamp

smaller than the global virtual time can be considered fossil and is no longer needed. [27]

presents a fossil collection algorithm that is using �xed time windows in which history is kept.

It does not depend on the global virtual time and therefore makes the global calculation of the

global virtual time unnecessary. In [28] the same authors map optimism to fossil collection in

a time warp simulation. Further approaches are presented in [29, 30].

Another approach to overcome the problem is the cancelback protocol discussed in [31]. If

the system runs out of memory, processed events that lay too far in the future are rolled back,

thus freeing memory. Similar approaches are presented in [32, 33].

State saving in intervals rather than after each event is another approach to save memory

and is described in [34, 35].

2.7.4.2 Preventing overly optimistic execution

Preventing overly optimistic execution reduces the probability for time warps and also reduces

the memory footprint for saving the simulation history.

One possibility is to exploit the global virtual time to prevent overly optimistic execution.

Basically these approaches ensure that none of the partitions simulate too far into the future

12

2 Theoretical foundations and related work

from global virtual time. An early technique uses a sliding window of simulated time which is

de�ned as [GV T,GV T +W] where W is a user de�ned parameter [12]. This approach was

published in [36]. It prevents any partition advances further than GV T +W . Further similar

approaches are listed in [12].

2.7.4.3 Improved cancellation

Another approach to improve optimistic simulation is to improve the cancellation strategy.

Basically cancellation strategies are distinguished between lazy and aggressive algorithms.

Aggressive cancellation means that upon detecting a causality violation the partition performs a

roll back and immediately sends out cancellation messages for all messages that were processed

prematurely. Lazy cancellation in contrast, performs a roll back and holds back cancellation

messages until it is proved that previously sent events were incorrect. In [37] the authors

present a dynamic switching strategy between lazy and aggressive cancellation in order to

improve simulation performance.

In [38] the authors propose to implement inverse events to perform time warps. For each

event an inverse event must be implemented that undoes the actions of its positive counterpart.

The aim of this approach is to reduce the memory footprint by avoiding state saving. The

authors also present an inversion compiler that automatically generates inverse events out of

their positive counterparts.

2.7.5 Performance estimation of optimistic algorithms

The performance of time warp algorithms is often di�cult to predict [25]. Little work on the

performance issues of time warp algorithm schemes has been presented so far [39]. In [40]

the authors present a performance analysis of "‘Time Warp"’ with limited memory. They state

that prior work on time warp algorithms never considered that memory is only available in

limited amounts. Therefore, they present an analytical model of time warp. This model is

using the cancelback protocol and assumes a limited amount of memory for storing history

data. They showed that the time warp algorithm performs considerably well even with a

limited amount of memory. However, they assume a homogeneous distribution of events

which might not be the case in realistic simulations and heavily depends on the partitioning

strategy. In some approaches, the optimistic simulations create periodic checkpoints in order

to roll back to an earlier state in time. In [41] the authors investigate the e�ects of varying

the frequency of checkpointing on the time and space needed to execute a simulation. They

prove the assumption that varying the checkpoint frequency has a considerable e�ect on the

13

2 Theoretical foundations and related work

amount of memory needed to save checkpoints and on execution times as well. The cancelback

protocol is investigated in [39, 42]. The authors research the e�ect of limited memory and

memory management on simulation performance similar to [40].

However, there are no approaches present so far to calculate the parallel potential of a

sequential simulation when using an optimistic scheduling algorithm. Without knowing the

parallel potential it is hard to decide whether an optimistic approach will bring the desired

increase in performance. This might also be a reason why optimistic parallel simulation has

not yet found a wide spread use in the �eld of DES.

2.8 Conservative Algorithms

In contrast to optimistic algorithms, conservative algorithms are built to prevent causality

violations to happen. The �rst synchronization algorithms were based on conservative ap-

proaches [12]. For example, suppose a partition processed an event e1 at t = 10 and therefore,

is at simulation time 10. Furthermore, it is ready to process the next event e2 at t = 15. How

does the partition know, that it will not receive an event with a timestamp smaller than t = 15

from a neighbouring partition after processing event e2 as shown in Figure 2.11? In summary

e2Partition 1 t
e1

t=10 t=15

Partition 2
t=12

?

Figure 2.11: Partition 1 must know if it will receive any events with a timestamp smaller than

t = 15 before processing e2. Otherwise a causality violation might occur (see also

[12]).

the main objective of conservative algorithms is to determine when it is "‘safe"’ to execute an

event. That is, when it can guarantee that the partition will not receive any further events

with a smaller timestamp at a later point in time. As a general rule, partitions must not process

an event before it has been guaranteed to be safe [12].

2.8.1 Null Message Algorithm

One of the �rst conservative synchronization algorithms was the Null Message Algorithm

[8, 12]. It was presented 1977 in [43] and 1979 in [44]. Further explanations of the null message

14

2 Theoretical foundations and related work

algorithm can be found in [8, 12, 19]. The basic principle of function will be explained in this

section and is based on [12].

Explaining the NMA requires the de�nition of internal and external events. Internal events

are events created and processed by the same partition. External events are events created by

one partition, sent to another partition and processed by that partition.

Partition
2

Partition
3

Partition
1

Figure 2.12: Example simulation consisting of three partition using a bidirectional links based

on an IPC mechanism for event exchange.

The example simulation shown in Figure 2.12 consists of three partitions. The following

assumptions are made:

1. According to 2.4 and 2.5 both partitions process events in increasing timestamp order.

2. Each partition will only send events to its neighbouring partition in increasing timestamp

order.

3. Receiving an event with timestamp t from the neighbouring partition guarantees that

there will not be another event received with a timestamp smaller t.

The following rules apply for each partition: external events received on one link must be

stored in time correct order. As soon as the partition received at least one external event on

each link, it can select the link containing the event with the smallest timestamp called tlow.

This timestamp is called EIT [19]. It denotes the earliest time a partition can expect an external

event to arrive from its neighbouring partitions. According to assumptions two and three, there

will be no further events received from any neighbouring partition, with a timestamp smaller

than the EIT. For this reason, the partition can process all internal events with a timestamp

smaller than the EIT.

This approach successfully prevents causality violations to happen but in its current state it

is prone to deadlocks. Suppose every partition starts with at least one internal event inside its

FES. Processing this internal event will cause sending the �rst external events to neighbouring

partitions. In order to process the �rst internal event the partitions must determine whether

15

2 Theoretical foundations and related work

it is safe. Before it can do this, it must have received at least one external event on each link.

As stated before, the algorithm needs to receive at least one external event on each link to

determine which events are safe to be processed. As a result, the partitions wait for each other

to receive external events and the simulation is in deadlock state.

Partition
2

Partition
3

Partition
1

t21=? t31=?

t12=? t13=?

t32=? t23=?

Figure 2.13: The simulation is in deadlock since the partitions do not receive external events

on their links. txy denotes the time an event was last received on partition x, sent

from partition y.

Null messages are used to solve deadlock situations. A null message with a timestamp tnull is

a promise of the sending partition to the receiving partition that it will not send an event with

a timestamp smaller than tnull at the same link in the future. This timestamp is called earliest

output time (EOT) [19]. It denotes the earliest point in time, at which a partition will send an

external event to its neighbouring partitions. Null messages are processed like ordinary events

except, they do not cause any changes to the simulation or lead to any activity inside the

simulation. The null message just contains a timestamp that is used by the receiving partition

to determine which other events are safe to process. Suppose Partition 2 knows it will not send

an event to Partition 1 with a timestamp earlier than t21 = 5 and that Partition 3 will not send

an event to Partition 1 with a timestamp earlier than t31 = 10. Both partitions will then send a

Partition
2

Partition
3

Partition
1

t21=5 t31=10

Figure 2.14: Partitions 2 and 3 send a null message to Partition 1 promising not to send any

further events with a timestamp smaller their null messages timestamp.

null message to Partition 1 including the corresponding timestamp as shown in Figure 2.14. As

16

2 Theoretical foundations and related work

Partition 1 now received external events on both links, it can determine the events that can be

processed safely, which are all events with a timestamp smaller than t21 = 5.

A question that arises is: How does a partition determine the timestamp of the null message

it sends to its neighbouring partitions? If a partition is at simulation time t and it can guarantee

that it will not send a message earlier than t+L, it can send a null message containing t+L as

timestamp. L is called lookahead. In other words: Lookahead is a lower bound on the duration

after which the partition will send a message to another partition [19]. Reasons for a lookahead

of length L could be internal processing time of the partition or the simulation time that is

needed to exchange an event between two partitions. Lookahead is a key property by virtually

all conservative synchronization algorithms [12]. It plays a vital role for the performance of

parallel simulations and therefore, choosing an insu�cient lookahead might lead to severe

performance penalties.

Partition
2

Partition
1

tLookahead=1

tnull=101
tnull=102

…
tnull=200

tsim1=100
tsim1=102

tsim1=200
…

tsim2=101

…

Figure 2.15: Typical example for the major drawback of the null message algorithm. Assuming

a lookahead of 1 and a current simulation time of 100, it takes 100 null messages to

advance the simulation time of Partition 1 to process the event at te = 200 safely.

A major drawback of the NMA is that it might create an excessive amount of null message

[11, 45]. Consider a simulation consisting of two partitions. Let the exchange of an event

between both partitions take the time ttransfer = 1 in simulation time and the lookahead

therefore be tlookahead = 1. Furthermore, both partitions are at simulation time t = 100 and

the next event to process is at simulation time te = 200 in Partition 1 as shown in Figure

2.15. To advance the simulation time of Partition 1 from tp1 = 100 to tp1 = 200 the Partition

1 will start exchanging null messages with timestamps 101, 102, 103 and so on as shown in

Figure 2.15. When the null message with timestamp 200 is received by Partition 1 it can �nally

process the event. In summary to process one single event it takes an exchange of 100 null

message which has a severely negative e�ect on parallel simulation performance.

17

2 Theoretical foundations and related work

2.8.2 Optimization of conservative algorithms

One branch of research in conservative algorithms is working on improving the parallel simula-

tion performance. Therefore, many scienti�c publications revolve around reducing the amount

of null messages since they pose the major drawback of this algorithm [11, 46]. Until today

there exists no generalized approach towards optimizing conservative simulation. Synchro-

nization is a non trivial task and the di�erent approaches presented in various publications

are especially tailored to the nature of the underlying simulation. Therefore, speed-up varies

considerably, depending on aspects of the simulation model [8].

The principal problem is that the algorithm uses only the current simulation time of each

partition and lookahead [12]. It uses just these two informations to calculate a timestamp for its

null message to tell other partitions about the minimum timestamp of messages it might send

in the future. If both partitions of the previous example (see Figure 2.15) were able to recognize

that the next event to process had timestamp 200, they could have advanced simulation time

immediately to t = 200.

The remainder of this section presents current optimization approaches in conservative

algorithms grouped by optimization strategy.

2.8.2.1 Conditional null message

Partition 1 t
Period of time without events

Partition 2

L

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

Figure 2.16: Simpli�ed representation of message tra�c with a larger period in simulation time

without any simulation events. Vertical dotted lines represent the lookahead L

between Partition 1 and 2 which is also the interval in which null messages are

exchanged.

Figure 2.16 shows a typical event emergence that causes an excessive amount of null messages.

In this example, events at t2 will be processed in parallel. Then comes a period of time without

any simulation events. In order to advance the simulation time to the next processable events

at t8, both partitions exchange null messages and advance the simulation time in steps, the

size of the lookahead L. In this example it requires six null messages per partition to reach

18

2 Theoretical foundations and related work

t8 without processing any meaningful simulation events. At t8 the partitions can continue

processing events in parallel again.

One approach that aimed at improving the NMA is the conditional null message algorithm

(CNMA) �rst presented in [47]. The main idea of this approach is to let the partitions alternate

between a common EIT computation phase and a common event processing phase [19]. During

EIT computation phase, the partitions cooperatively compute a global EIT and then switch

to the processing phase. In order to do this, each partition computes its earliest conditional

output time (ECOT). ECOT is the earliest time, a partition will send an external event to its

neighbouring partitions, assuming it will not receive any further external events with a lower

timestamp. The global EIT is then calculated as the minimum ECOT of all partitions p.

EIT = min(ECOTp) (2.1)

During processing phase the partitions process all events with a lower timestamp than the

computed EIT and within the current lookahead.

For example assume both partitions just �nished their processing phase at t2 as shown in

Figure 2.16. They now enter the ECOT computation phase. According to Figure 2.16 Partition

1 and 2 both have their next events to process at t8. Without any internal events with a

timestamp smaller than t8, both partitions will not send any external events earlier than t8.

Therefore, under the assumption that Partition 1 and 2 will not receive any further external

events with a timestamp smaller than t8, ECOTP1 = ECOTP2 = t8. As a consequence, the

ECOT computes to be t8. Both partitions can safely advance their simulation time to t8 without

exchanging further null messages. From t8 they can both process all remaining events with a

timestamp smaller than t8 + L in parallel (same logic as for the NMA in section 2.8.1). After

that, processing phase is complete and they must enter ECOT computation phase again.

2.8.2.2 Carrier null message

The carrier null message approach was introduced by Cai and Turner in [20]. Its main purpose

is to reduce the amount of null messages and to increase lookahead by exploiting the underlying

model network topology. Wood and Turner presented an advanced version in [48].

The basic idea is that null messages carry additional informations including route informa-

tion and lookahead information [48]. This way partitions get a global view on the current

simulations state. The route information keeps a record which partition the null message has

passed since its creation. The lookahead information enables the receiving partition to calculate

a lower bound on the time of the earliest possible message which can subsequently occur

19

2 Theoretical foundations and related work

within those partitions passed. Therefore, using this mechanism would reduce the amount of

null messages by expanding the lookahead.

The carrier null message algorithm is an interesting approach since it could also be used

to propagate an extended lookahead. For example if both partitions of the example in Figure

2.15 knew that the next event was scheduled at simulation time t = 200, both partitions could

advance their simulation time immediately without sending further null messages.

An interesting addition to this approach is described in [49] in which they propose a tech-

nique called cooperative acceleration [46]. The mechanism allows partitions to cooperatively

advance in simulation time by exchanging information about the timestamp of the next de�nite

event to process. Once all partitions agree to the proposed timestamp, they collectively advance

their simulation time.

These algorithms were developed with small lookahead simulations in mind.

2.8.2.3 Conservative time windows

The moving time window approach was �rst introduced in [50]. The idea is to de�ne a time

Partition 1 t

Partition 2 t

Partition 3 t

Figure 2.17: Moving time window shown in dotted lines whose inner events are safe to process.

window marking the events that can be processed in parallel as shown in Figure 2.17. The

lower edge of the time window consists of the lower bound on timestamps of all events still

to process. The upper edge or window size is given by the simulation programmer or by

performing runtime analysis of the simulation. All events with a timestamp inside the moving

time window are considered to be safe and can be executed in parallel.

An empirical performance study is performed in [51] and suggests the dynamic adjustment

of the time window size at runtime in order to further increase performance.

20

2 Theoretical foundations and related work

2.8.2.4 Null message cancellation

The basic idea of null message cancellation is described and analyzed in [52]. The main idea is

to cancel the processing of a null message if it is overtaken by another event with a higher

timestamp. In case a partition receives an event, it will cancel or �ush out all previously

received and queued null messages with a smaller timestamp.

2.8.2.5 Demand driven

An early adaption of the NMA is the Shared Ressource Algorithm for Distributed Simulation

described in [53]. The basic idea is that the null message generation is demand driven. When-

ever a partition runs out of events on one of its links, it will actively request a null message.

Although this algorithm aims at reducing the amount of null messages it has performance

limitations. This is because the transfer of a null messages requires twice the time due to the

request and transmission mechanism. Similar demand driven approaches are presented in

[54, 55].

2.8.2.6 Path lookahead

Path lookahead denotes a data oriented approach and is described in [46, 56, 57]. The basic

idea is not to look at the physical links that connect the simulation partitions but at the data

�ow. Consider the simulation shown in Figure 2.18 consisting of three partitions. Suppose

Partition
2

Partition
3

Partition
1

Figure 2.18: Example simulation for path lookahead.

Partition 1 is sending events at Partition 2 in intervals of 5ms and at Partition 3 in intervals

of 10ms. Transferring an event takes 1ms on each link. Therefore, using just the transfer

delay of 1ms gives a small lookahead. Instead of using link delays for lookahead calculation,

path lookahead considers the data �ow. Figure 2.19 shows the data �ow view of the example

simulation. It shows that the simulation consists of two independent data �ows. As a result

the lookahed from Partition 1 to Partition 2 can be set to 5ms, whereas for the link between

21

2 Theoretical foundations and related work

Partition
2

Partition
3

Partition
1

5ms

10msPartition
1

Figure 2.19: Data�ow view at the simulation.

Partition 1 and Partition 3 it can be set to 10ms. This way the lookahead is increased by factors

5 and 10, thus successfully decreasing the amount of null messages.

2.8.3 Performance estimation of conservative algorithms

Another branch of scienti�c research revolves around the performance estimation of con-

servative algorithms. Computer scientists examine the di�erent optimization strategies for

e�ciency and develop further improvements based on the results. A good example is [51] in

which Sokol, Weissman and Mutchler performed a performance study on the moving time

window approach and improved it by allowing dynamic changes at runtime. In [26] Varga

et al. present a practical e�ciency criterion for the NMA that allows to estimate the parallel

potential of a sequential simulation model, before investing e�ort into turning it into a parallel

simulation. Dong et al. study the e�ects of partitioning in [58]. They investigate the e�ects of

partitioning on huge systems and compare di�erent partitioning strategies. A performance

evaluation of conservative algorithms is presented in [19] by Bagrodia et al. Such performance

studies should be considered with care since the performance of the di�erent algorithms always

depends on the underlying model that was simulated. Therefore, the results should not be

used for simulation models with di�erent architecture. [59] presents an analytical approach to

determine the optimal lookahead inside a parallel simulation. This is done on a mathematical

base and aims at reducing the average amount of null messages between two real events.

2.9 Time-Triggered Ethernet

Ethernet has seen a tremendous success and is a wide spread solution in networking computers

and devices. Its advantages are that it is easy to use, reliable and relatively cheap to purchase.

However, it was not developed with realtime applications in mind. Therefore, the deterministic

22

2 Theoretical foundations and related work

capabilities of the original Ethernet are limited. Deterministic communication requires full

control of jitter, constant message latency and a repeatable message order. TTE is a standard

speci�ed by TTTech and the university of Vienna. It adds the afore mentioned capabilities to

the original Ethernet technology, thus making Ethernet available for time critical and realtime

applications that require deterministic behaviour. First results on TTE were published in 2005

in [?]. TTE also known as AS6802, enables shared communication among real-time and

safety-critical applications, event-driven applications and standard Ethernet communications

over the same Ethernet backbone network [?].

2.9.1 Communication protocols

The TTE standard basically de�nes three di�erent tra�c types for messages inside the network:

• Deterministic Time-Triggered (TT) tra�c - synchronous communication for realtime

applications with high demands on determinism.

• Event-Driven or rate-constrained (RC) tra�c - asynchronous communication for appli-

cations with high demands on bandwidth reliability and availablility.

• Best-e�ort (BE) standard Ethernet tra�c - asynchronous communication that is realising

standard 802.3 tra�c.

In order to assign one of these tra�c types to data connections between a sender and receiver,

TTE is using the virtual link (VL) concept. Each VL represents a logical link inside the Ethernet

connection. To each VL a sender, a receiver and a tra�c type must be assigned. The VL is

then acting as communication channel with the speci�ed tra�c type and the assigned senders

and receivers. The physical Ethernet link is basically split into smaller logical links with pre-

de�ned tra�c types as shown in Figure 2.20. The quality of service can be further enhanced

by assigning priorities to RC tra�c for example. The TTE logic is implemented in special

switches.

2.9.1.1 Deterministic Time-Triggered (TT) tra�ic

TT messages are sent at de�ned points in time. Messages are guaranteed to be sent at these

times and are used by realtime applications which are highly dependent on deterministic

behaviour. The time of sending underlies a globally synchronised system time that is generated

by a synchronization algorithm described in section 2.9.2. TT messages always take precedence

over all other messages at all times. Typical applications might be for example steer-by-wire

or break-by-wire systems.

23

2 Theoretical foundations and related work

TTEthernet

Time-Triggered (TT) traffic
realtime, ultra low latency, safety

Rate-constrained (RC) traffic
Audio, video, sensor fusion

Best-effort (BE) traffic
IEEE 802.3 standard traffic

Figure 2.20: Time triggered Ethernet with many virtual links with individually de�ned tra�c

types

2.9.1.2 Event-Driven or rate-constrained (RC) tra�ic

RC tra�c is used for applications with less stringent determinism and real-time requirements

than strictly TT applications [?]. In contrast to TT messages, RC tra�c does not underlie

a globally synchronised system time. For RC tra�c the required and prede�ned bandwidth

is guaranteed to be available and delays and temporal deviations are within known limits.

Therefore, delays might occur within these speci�ed time limits. RC tra�c has less priority

than TT tra�c but takes precedence of BE tra�c. Typical applications might be sensor fusion

or audio, video bridging.

2.9.1.3 Best-e�ort (BE) tra�ic

BE is the third tra�c type in TTE. It denotes the classical Ethernet method for message

transmission [?]. It does not o�er any guarantees on message delivery and delivery times.

Delays or loss of messages might occur depending on the current network load. BE tra�c has

less priority than TT and RC tra�c. Therefore, it is using the free bandwidth next to the TT

and RC tra�c.

2.9.2 Common time base

Communication inside the TTE network follows a communication schedule, that is pre-de�ned

at time of construction. Following this common time schedule requires that all nodes share

a common time base that is necessary for timed-triggered communication (see also [60] for

a comparison of time-triggered and event-triggered communication). For this reason TTE

contains a system-wide clock synchronization mechanism. This mechanism consists of a startup

24

2 Theoretical foundations and related work

protocol that is responsible for establishing synchronization at startup, a clock-synchronization

protocol that periodically synchronizes the network nodes and a clique-detection and resolution

service to recover from network-wide transient upsets [?].

25

3 Problem Analysis

Using parallel simulation does not automatically yield performance gains. A linear increase

in performance, compared to sequential execution, can also not be expected. This is due to

the additional e�ort to send simulation messages across process borders and the additional

synchronization overhead (see section 2.6) that is required [26]. Performance gains depend

on a variety of factors [19]. Partitioning for example, has a signi�cant e�ect on performance

[58]. Using the wrong partitioning scheme will result in performance decreases. Using an

optimistic scheduling approach for example, might result in bad performance, when the nature

of the underlying simulation model causes a relatively huge amount of cascading rollbacks.

Therefore, to bene�t from parallel simulation, it is necessary to perform a careful analysis of

the underlying simulation. Two simulation models, Simulation 1 and 2, are representative for

the in vehicle network simulations at CoRE. This chapter presents the results from analysing

these simulations. The results will be used as a decision base and as the foundation for a

parallelism concept. Section 3.1 presents the two simulation models under investigation and

explains the physical layout. Section 3.2 performs a data�ow analysis and gives an overview

of the di�erent message tra�c types inside the simulated in vehicle networks. The parallel

potential of both simulations introduced in section 3.1 will be analysed quantitatively and

empirically in section 3.3. The results are summarized in the analysis conclusion in section 3.4.

3.1 Simulation model

Figure 3.1 shows Simulation 1. The model represents an in vehicle network with a TTE based

backbone. It contains nine CAN buses, which are highlighted in green. These CAN buses,

which are shown in red, are connected to the TTE by dedicated gateways. Each CAN bus

connects at least one electronic control unit (ECU). An ECU is an embedded system inside a

vehicle that is controlling one or more functions of the vehicle’s systems. The gateways act as

translation units between the CAN buses and the TTE. Therefore, each gateway is responsible

for translating messages between its associated CAN bus and the TTE.

The TTE part of the simulation consists out of three TTE switches, seven network nodes and

the afore mentioned CAN gateways. At this moment of development the network topology is

26

3 Problem Analysis

Figure 3.1: Simulation 1 - In vehicle network simulation model with TTE backbone (red) and

nine controller area network (CAN) buses (green) connected via gateways to the

TTE

27

3 Problem Analysis

stellar with switch 1 as central network node. Two laser distance sensor units (lid1, lid2) and

one camera unit (cam1) are connected to switch 0. A logging unit (log), sensor fusion (fusi)

and camera unit (cam2) are connected to switch 2. Switch 0, switch 2 all gateway units (gw_*)

and a central control unit (ecu1) are connected to switch 1.

Simulation 2 is shown in Figure 3.1. It is a slightly modi�ed version of Simulation 1. The

main aim of Simulation 2 is to place the ECUs closer to their place of operation. Therefore, the

CAN buses got split into two parts A and B and assigned to their own TTE switch (3 and 4).

package KM_Generated_RecBar_CarnotScheduled

KM_Generated_RecBar_CarnotScheduled

c1

can500000

ecu76b2

ecu114b1

ecu115b1

ecu99b3

ecu34b5
ecu39b5

ecu84b2

ecu65b4

ecu93b3

ecu67b9

ecu94b3

ecu67b4

gw_MQB_SFCAN_a

ecu116b1

ecu91b3

ecu97b3

lid1 fusi

lid2

ecu106b1

ecu48b5

ecu124b1

gw_MQB_ACAN_b

ecu50b5

gw_MQB_ACAN_a

log

ecu125b1

ecu105b1

gw_VW_MQB_CAN_Infotainment_a

ecu100b3

gw_MIB_MIBCAN_a

ecu107b1

ecu70b4

ecu111b1

_M

ecu1

gw_VW_MQB_CAN_Infotainment_b

ecu103b3
ecu51b5

ecu51b6

gw_VW_MQB_CAN_Komfort_a

gw_VW_MQB_CAN_Komfort_b

N_bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

ecu121b1

ecu88b2

MQ

ecu90b2

cam1 cam2

ecu80b2

ecu64b4

ecu2b0

gw_MQB_HCAN_a

ecu96b3

ecu64b9

gw_MQB_FCAN_a

ecu95b3

gw_MQB_FCAN_b

ecu21b7

_VW_MQMQMQMQMQMQMQMQMQMQMQMQMQMQMQMQMQMQMQW_W_MQW_W_W_W_W_W_W_W_MQ

ecu85b2

ecu1b0

ecu113b1

ecu3b0

ment_b

gw_MQB_ECAN_b

gw_AFSCAN_a

gw_MQB_ECAN_a

QB_A_A_A_A_A_A_A_A_A_A_ACA_A_A_A_A_A_A_A_A_A_A_A_A_A_A

canbus5b

switch4

4b4b4b4b4b4b4b555555555555555

canbus5a

_MQB_E_ECA_E

canbus4b

5b5b5b5b5b5b5b5b44444444

canbus4a

6b6b6b6b6b2222222222222222222

canbus2a

b0

canbus0a

B_ N_N_N_N_N_N_N_N_N_N_InN_N_N_N_N_N_N_N_N_N_N_

canbus3b

9b9b9b9b333333333

canbus3a

canbus6a canbus7a

7b7b7b7b7b999999999

canbus9a

switch2

gwgwgwgwgwgwgwN_N_N_N_N_N_N_N_N_N_N_N_N_N_N_N_N_aaaaaaa

switch3

switch0 switch1

_MQB_FCA_FCA_F

canbus2b

14b1b1b1b1b1b1b1b1b1b1b1

canbus1a

B_CAN_

canbus1b

Figure 3.2: Simulation 2 - Modi�ed version of Simulation 1 with TTE backbone and distributed

CAN buses connected to two additional TTE switches to ease physical placement

of ECUs in reality.

28

3 Problem Analysis

3.2 Dataflow analysis

This section presents a data�ow view of the underlying simulation. The data�ow view gives a

�rst idea on how messages are sent inside the network and what kind of messages are sent.

Understanding the data�ow is the foundation of lookahead based optimization strategies that

were introduced in section 2.8.2.6.

Four di�erent tra�c types can be observed inside both simulations. Cyclic message tra�c

occurs inside the CAN buses. The TTE experiences all three tra�c types mentioned in section

2.9. Namely:

• Rate constrained message tra�c

• Time-triggered message tra�c

• Best e�ort message tra�c

3.2.1 Cyclic message tra�ic

Cyclic message tra�c is generated by CAN nodes. The messages are sent in de�ned time

intervals that range from 10 ms up to 2000 ms. Receivers are:

• CAN nodes on the same bus

• CAN nodes on another bus

• TTE nodes

CAN messages that are sent to neighbouring CAN nodes on the same bus, are directly trans-

ferred which is shown in Figure 3.3. CAN messages that are destined for CAN nodes on another

CAN bus or one of the TTE nodes, must be forwarded using the TTE network. These messages

are called heterogeneous messages. Heterogeneous message transfer is shown in Figure 3.4.

The conversion of CAN messages to TTE messages is the task of CAN-TTE-Gateways (CTGs).

These gateways are connected to both the CAN bus as well as to the TTE network. They

collect CAN messages that must be forwarded and wrap them into TTE messages. These

TTE messages are then routed forward to their destination TTE nodes and CTGs. Depending

on the requirements, CTGs use RC or TT messages to forward the wrapped CAN messages.

Although CAN messages are being sent in regular intervals, they are non-deterministic. Due

to arbitration on the CAN bus, messages get delayed when another CAN node is already

occupying the bus for sending a message.

29

3 Problem Analysis

ecu1b0

ecu2b0

ecu3b0

gw_AFSCAN

switch1 switch0 switch2 cam2

log fusi ecu1

gw_... gw_... ...

C
A

N

lid2 cam1 lid1

Figure 3.3: CAN node ecu3b0 sending a message to its neighbouring CAN nodes ecu1b0 and

ecu2b0

ecu1b0

ecu2b0

ecu3b0

gw_AFSCAN

switch1 switch0 switch2 cam2

log fusi ecu1

gw_... gw_... ...

C
A

N

lid2 cam1 lid1

Figure 3.4: Heterogeneous message transfer from CAN node ecu3b0 to ecu1b0, ecu2b0, fusi,

log and further CAN nodes

30

3 Problem Analysis

3.2.2 Rate constrained message tra�ic

ecu1b0

ecu2b0

ecu3b0

gw_AFSCAN

switch1 switch0 switch2 cam2

log fusi ecu1

gw_... gw_... ...

C
A

N

lid2 cam1 lid1

Figure 3.5: Example RC or TT message from cam1 to fusi and log

RC messages are used by TTE nodes for communication as shown in Figure 3.5. It is used

by those nodes that have lower expectations on deterministic transportation but also need to

transfer relatively huge amounts of data. An example node is the camera unit (cam1) shown

in Figure 3.1. It is streaming its data using RC tra�c. Using RC tra�c has the advantage of

guaranteed bandwidth (see section 2.9). Since it is non deterministic, there might be a jitter

observable between RC messages that can be ignored. TTE nodes do not send any messages to

CAN nodes using RC tra�c.

3.2.3 Time triggered message tra�ic

TT messages are used by TTE nodes for deterministic communication which is shown in

Figure 3.5. Therefore, TT tra�c is chosen for those nodes with realtime requirements. Using

TT tra�c has the advantage of guaranteed transmission times (see section 2.9). Since it has

deterministic behaviour, the message jitter will be kept to a minimum. TTE nodes do not send

any TT messages to CAN nodes.

3.2.4 Best e�ort message tra�ic

In Simulation 1 and 2 BE tra�c is used to stresstest the network and to validate that timing

constraints are accomplished under heavy network loads. Therefore, BE tra�c is optional and

does not embody the main tra�c type in both simulation’s TTE networks.

31

3 Problem Analysis

3.3 Parallel potential analysis

This section presents the results of the parallel potential analysis. Before investing time into

optimising a sequential simulation by parallelising it, one should have an idea of its parallel

potential. This is because parallelization does not automatically yield performance bene�ts. In

some cases it might even have a negative impact on simulation performance. Knowing the

parallel potential, one can avoid the e�ort to optimise simulations that will just barely or not

at all bene�t from parallelization. Di�erent techniques have been developed to estimate the

parallel potential of a sequential simulation. The analytical analysis is using mathematical

formulas to determine the parallel potential of a sequential simulation when using the NMA.

The results of the analytical analysis are discussed in section 3.3.1. The empirical analysis uses

specially tailored scheduling algorithms to minimize the simulation overhead as far as possible.

The results of the empirical analysis are discussed in section 3.3.2.

3.3.1 Analytical analysis

In [26] the quantitative e�ciency criterion is presented to calculate the parallel potential of

a sequential simulation when using the NMA. This section explains the theory behind the

e�ciency criterion in section 3.3.1.1 and applies the e�ciency criterion to Simulation 1 and 2

in section 3.3.1.2.

3.3.1.1 The e�iciency criterion

The authors state, that their criterion is a hint towards a possible and not a guaranteed speed-up.

Therefore, a guaranteed absolute performance gain can not be calculated with this method.

The following abbreviations introduced in [26] will be used throughout the remainder of this

section:

• ev: Events (see event)

• sec: Real seconds (see real time)

• simsec: Simulated seconds (see simulation time)

The practical e�ciency criterion is based on a number of formulas which are using the following

variables:

• P performance represents the count of events processed per second (ev/sec). The perfor-

mance depends on the underlying hardware used and the average amount of computation

needed to process an event.

32

3 Problem Analysis

• E event density is the number of events that must be processed per simulated second

(ev/simsec). E solely depends on the simulation model.

• R relative speed measures the simulation time advancement per second (simsec/sec).

Basically it tells how far the simulation advances in simulation time in 1 s of real time.

• L lookahead is measured in simulated seconds (simsec). For network simulations the

lookahead is often assumed to be the link delay. At this point of time without any further

optimization thoughts for lookahead, the link delay will be used for the calculation

as well. The lookahead is calculated for the worst case possible. That is the smallest

message possible on TTE. Therefore, a minimum message size of 64 Bytes is assumed.

The transmission delay is 200 ns. The transmission speed is 100000000bits/s in both

simulations. The interframe delay has 96 Bits. The lookahead is then calculated as follows:

tlookahead = (((64byte ∗ 8 bit
byte) + 96bit)/100000000 bit

s) + 0.0000002s = 0.00000628s

• τ latency (sec) is the real time it takes to exchange a message between two partitions.

For this work messages are exchanged over process borders using interprocess commu-

nication. In this particular case the MPI interface
1

is used, which is considerably faster

compared to named pipes or �le I/O.

Actual values for these variables must be obtained from running the simulation in sequential

mode. In OMNET++ these values are conveniently displayed by the IDE and can be directly

read from screen while running the simulation.

In case the lookahead between partitions is smaller than the time between events, it takes

more than one null message to advance in simulation time. The smaller the lookahead the

more null messages must be sent. This behaviour is well known and described in section 2.8.1.

Therefore, to optimize performance, the lookahead needs to be signi�cantly larger than the

time between events [26]. This relation is expressed in the following equation:

L >>
1

E
(3.1)

The formula becomes reasonable when taking a look at the units.

simsec >>
1
ev

simsec

>>
simsec

ev
(3.2)

1

http://www.open-mpi.de

33

3 Problem Analysis

simulation time

real time t

lo
o

ka
h

ea
d

simulation time tim
e b

etw
een

even

ts

event
EIT

Figure 3.6: Equation 3.1: The lookaheadLmust be bigger than the average amount of simulated

seconds that pass per event
simsec

ev .

Equation 3.1 is more conveniently expressed as:

LE >> 1 (3.3)

To bene�t from parallelization one must ensure that partitions do not need to block at the

EIT until the next null message arrives. That means partitions need to have enough events to

process in their FES until the next null message arrives. To estimate whether partitions have

enough events to process, the authors of [26] use the lookahead L and the relative speed R.

If the advance in simulated seconds is less or equal than the time it takes until the next null

message arrives, partitions do not have to block execution waiting for the next null message.

Therefore, a null message must arrive before the partition reaches its EIT. Putting this into a

mathematical expression, the authors assume ideal conditions for the simulation. That means,

the link between partitions is idle, lazy null message sending is implemented and the simulation

times of partitions advance in sync. Lazy null message sending is a technique to reduce the

amount of null messages. It means that null messages are only sent on deadlock instead of

sending a null message after each processed event [16, 19, 61]. A deadlock is reached, whenever

the partition processed all events inside its FES with a timestamp smaller than its EIT. Under

these conditions, partitions will periodically exchange null messages, which takes τ time to

arrive at the receiving partition. The null message must arrive at the receiving partition, before

the partition reaches its EIT that was received with the previous null message. Therefore, the

latency of message transfer must be smaller than the amount of time it takes to advance by L

in simulation time which is expressed by
L
R . This relation is expressed in the following formula:

τ <
L

R
(3.4)

34

3 Problem Analysis

Partition 1

Partition 2
t real time

t simulation time

t „MPI latency“

TP1 = RP1t

TP2 = RP2t

L lookahead

L / R

Null message

P2 timeline

P1 timeline

EIT

Figure 3.7: Example display of periodic null message exchange and correlation between sim-

ulation/real time, lookahead (L), relative speed (R) and earliest input time (EIT)

[26]

Considering that R = P
E this is more conveniently expressed as:

τP < LE (3.5)

In reality, the assumption that simulation time passes evenly, does not withstand. The reason

for this is because P and E tend to �uctuate. For this reason, a simulation with τP = LE will

experience frequent blocking of the simulation whereas τP < LE allows some �uctuation

of P and E without blocking the simulation. This insight let the authors de�ne the coupling

factor λ which is the ratio between LE and τP .

λ =
LE

τP
(3.6)

If λ < 1, frequent blocking will occur since partitions will have to wait for the receipt of null

messages. In this case one can not expect a performance bene�t from parallelization. Basically

one can expect that blocking is reduced, the bigger λ is. Experimental results conducted by

the authors showed that λ values below 10 are "‘small"’ whereas values greater than 100 are

considered "‘large"’. The arising question is: When is a lookahead considered to be "‘large"’

enough to yield a satisfying performance bene�t? This question is answered by the authors as

follows: Lookahead is considered to be "‘large"’ enough when λ is greater than a λ0 threshold

that is chosen in the range of 10 to 100 so the following inequality is ful�lled:

L >
λ0τP

E
(3.7)

35

3 Problem Analysis

In general, parallel simulations do consist out of n partitions. Therefore, Equation 3.6 needs to

be extended to calculate λ for each link between two partitions separately (see also 3.8).

λi,j =
Li,jEi

τi,jPi
(3.8)

To achieve good performance, all coupling factors must be su�ciently high enough. Therefore,

LPi

Ei , Pi

LPj

Ej , Pj

LPk

Ek , Pk

Li,j , ti,j Li,k , ti,k

Figure 3.8: Calculating λ for di�erent links between partitions [26]

the smallest coupling factor is the dominant constant and is de�ned as follows:

λ = min
i,j

λi,j (3.9)

Another question investigated is: How does the NMA scale with the number of processors

used? According to the authors, Pi and τi,j stay relatively constant with a growing number of

partitions. However, the total amount of events will not change. Therefore, Ei will decrease

since the total amount of events is distributed over a greater amount of partitions. Still assuming

that the events are propagated evenly, the following equation is valid for the event density:

min
i
En,i ≤

Eseq

n
(3.10)

With a decreasing event density, a partition will have less events to process between null

messages. This leads to an increased chance that partitions must block and wait for the next

null message because they run out of simulation events. The coupling factor will also decrease

with an increase in the amount of partitions.

λn ≤
λ0
n

(3.11)

36

3 Problem Analysis

3.3.1.2 Applying the e�iciency criterion

Applying the e�ciency criterion requires the measurement of the required input variables.

P and Eseq can be obtained from running the sequential simulation. Both values are already

calculated and displayed by OMNET++.

The test system, which the sequential simulation was run on, is a Dell Latitude E6430

Notebook. It contains an Intel Core i5 quad core CPU with eight virtual cores (hyperthreading).

Therefore, the maximum number of partitions would be 8. The Notebook is running Ubuntu

Linux 14.04.

For a �rst parallel potential analysis, the Ethernet link delay between partitions is used as

lookahead. The link delay is calculated as follows: Assuming the worst case scenario, the

minimum Ethernet frame size is considered with 64 byte<=> 512 bit. The propagation delay

amounts to 0.000 000 2 s. The TX speed is 100 000 000 bit/s. The inter frame delay is speci�ed

with 96bit. Therefore, the link delay is: (512bit+96bit
100000000 bit

s

) + 0.0000002s = 0.00000628s. Using

this lookahead, it will take
1 s

0.000 006 28 s
= 159235 null messages to advance the simulation

by 1 ms between two events (see also section 2.8.1). Therefore, using this relatively small

lookahead will have a negative impact on the parallel simulation performance. In order to

improve the parallel simulation performance, the lookahead should be extended as far as

possible.

Table 3.1: Measurement results of the Message Passing Interface (MPI) latency using Intel(R)

MPI Benchmark 4.0 Update 1

#bytes #repetitions tmin[usec] tmax[usec] tavg[usec] Mbytes/sec

64 1000 0,28 0,28 0,28 437,61

In this work, the MPI
2

is used to exchange events between partitions. The maximum event

size that is exchanged was estimated with 64 bytes the worst case. Measuring of the latency τ

was performed using Intel(R) MPI Benchmark 4.0 Update 1. As Table 3.1 shows, the latency

was measured with an average of 0.000 000 28 s. Equation (3.10) is used to calculate E for

a di�erent number of partitions. However, this calculation assumes an equal distribution

of events over all partitions. This assumption might not hold true for Simulation 1 and 2

depending on the partitioning strategy. In case the events are not equally distributed over all

partitions, the performance bene�t of the parallel simulation might be less than predicted by

the e�ciency criterion. Criterion 1 is calculated according to equation (3.1). λ for criterion 2 is

calculated according to equation (3.6). In order to achieve a performance bene�t from parallel

2

http://www.open-mpi.de

37

3 Problem Analysis

Table 3.2: Measured performance values for simulations 1 and 2

Simulation 1 Simulation 2 Unit

P performance 28387 28302
ev
sec

Eseq event density 550302 583238
ev

simsec

R relative speed 0.05 0.05
simsec
sec

L lookahead 0.00000628 0.00000628 simsec

τ latency 0.00000028 0.00000028 sec

simulation, criterion 1 should be well over 1.0 and criterion 2 should be well over at least 10

[62]. Table 3.3 and 3.4 show the results for Simulation 1 and 2 respectively. According to the

measured and calculated values, both simulations ful�l criterion one and two when using 2

and 3 partitions. At 4 and more partitions, the performance will decrease below that of the

sequential simulation. However, as mentioned before, the calculations assume that the events

Table 3.3: E�ciency criterion for Simulation 1

n Partitions E LE >> 1 λ > 10

1 550302 3,46 434,79

2 275151 1,73 217,40

3 183434 1,15 144,93

4 137576 0,86 108,70

5 110060 0,69 86,96

6 91717 0,58 72,47

7 78615 0,49 62,11

8 68788 0,43 54,35

are distributed evenly over all partitions. This might not be the case for the simulations in

question. For this reason, the parallel potential might be lower than expected depending on

the partitioning strategy.

38

3 Problem Analysis

Table 3.4: E�ciency criterion for Simulation 2

n Partitions E LE >> 1 λ > 10

1 583238 3,66 462,20

2 291619 1,83 231,10

3 194413 1,22 154,07

4 145810 0,92 115,55

5 116648 0,73 92,44

6 97206 0,61 77,03

7 83320 0,52 66,03

8 72905 0,46 57,78

3.3.2 Empirical analysis

Until recently, researchers have not been able to directly measure the maximum achievable

speed-up, and hence, PDES studies have been published without this comparison [26].

A solution to this problem was introduced in [19], called the ideal simulation protocol. It

is a parallel scheduler that is reducing the synchronization overhead to a minimum. Instead

of synchronizing partitions at runtime, by exchanging messages, it is using a pre-recorded

eventlog �le that contains informations about all events being sent. A similar eventlog based

approach was presented in [7]. Both approaches were meant to �nd out a simulations parallel

potential. They require at least one run to record the external events. Furthermore, the eventlog

must be recreated, whenever the simulation is changed. Therefore, they are less suitable for

use in a productive environment. Using one of these approaches consists out of several steps:

1. Select an e�cient partitioning strategy.

2. Run the parallel simulation using the NMA and record all external events for each

partition.

3. Run the eventlog based scheduler which will be using the recorded information about

external events to determine which events are safe to be processed.

In this work, the eventlog based scheduler from [7] is used, to determine the maximum parallel

potential of Simulation 1 and 2.

3.3.2.1 Choosing a partitioning strategy

The eventlog based scheduler requires a partitioned simulation in order to evaluate its maximum

parallel potential. An e�cient partitioning strategy is one that distributes events almost equally

39

3 Problem Analysis

over all existing partitions (see section 3.3.1.1). In order to �nd such a partitioning strategy,

both simulations are partitioned into functional groups that is CAN bus plus CAN nodes, TTE

switch plus TTE nodes. The amount of processed events per partition of simulations 1 and 2 is

then examined. Table 3.5 shows the �nal partitioning for Simulation 1 and 2. Both simulations

Table 3.5: Partitioning of simulation 1 and 2 to measure the amount of events per partition.

Simulation 1 Simulation 2
Partition 0 CAN CAN A

Partition 1 Switch 0 CAN B

Partition 2 Switch 1 Switch 0

Partition 3 Switch 2 Switch 1

Partition 4 - Switch 2

Partition 5 - Switch 3

Partition 6 - Switch 4

are run for a total simulation time of 5 s and the amount of processed events per partition is

measured. The results for Simulation 1 and 2 are shown in Figure 3.9. Both simulations show

C
A

N

S
w

it
c
h
0

S
w

it
c
h
1

S
w

it
c
h
2

0.5

1

·106

E
v
e
n

t
s

p
r
o

c
e
s
s
e
d

[e
v
e
n

t
]

(a) Simulation 1

C
A

N
A

C
A

N
B

S
w

it
c
h
0

S
w

it
c
h
1

S
w

it
c
h
2

S
w

it
c
h
3

S
w

it
c
h
4

2

4

6

8
·105

E
v
e
n

t
s

p
r
o

c
e
s
s
e
d

[e
v
e
n

t
]

(b) Simulation 2

Figure 3.9: Event density measurement of Simulation 1 and 2. The bars show the total amount

of events processed per partition, in order to simulate 5 s of simulation time.

that the amount of messages processed in the CAN partitions is almost similar to the total

amount of messages in the TTE partitions. Simulation 1 has a CAN to TTE message ratio of

1.06 and Simulation 2 of 0.83. For this reason, splitting both simulations into a CAN partition

40

3 Problem Analysis

and a TTE partition seems to be the most e�cient. This conclusion also corresponds to the

results of the e�ciency criterion in section 3.3.1.2.

3.3.2.2 Parallel potential measurement

To evaluate the maximum parallel potential, both simulations are run with the eventlog based

scheduler. Partitioning is done according to section 3.3.2.1. The measurement results are shown

in Figure 3.10. The runtime of the eventlog based scheduler proves that both simulations have

s
e
q
u
e
n
ti
a
l

n
u
ll
m

e
s
s
a
g
e

e
v
e
n
tl
o
g

0

50

100

150

23
.9
3

14
7.
32

6.
56

R
u

n
t
i
m

e
[s

]

(a) Simulation 1

s
e
q
u
e
n
ti
a
l

n
u
ll
m

e
s
s
a
g
e

e
v
e
n
tl
o
g

0

50

100

150

41
.5
1

16
6.
77

7.
39

R
u

n
t
i
m

e
[s

]

(b) Simulation 2

Figure 3.10: Parallel potential measurement for Simulation 1 and 2 using the sequential sched-

uler, NMA and eventlog based scheduler. Both simulations simulate 5 s of simula-

tion time.

parallel potential when using the selected partitioning strategy. Simulation 1 takes 6.56 s in

parallel, compared to 23.93 s in sequential execution mode. This corresponds to an optimization

factor of:
23.93 s

6.56 s
= 3.65. The optimization factor of Simulation 2 is even better and corresponds

to:
41.51 s

7.39 s
= 5.62. Another fact is that the sequential runtime of Simulation 2 is around 43%

higher as that of Simulation 1. However, the parallel runtime of Simulation 2 is just 11% higher

as that of Simulation 1. This non linear correlation shows, that the sequential simulation is not

taking full advantage of the available hardware potential. The NMA is a lot slower than the

sequential scheduler. For Simulation 1 it takes 147.32 s and for Simulation 2 it takes 166.77 s

to �nish.

One reason for the bad performance of the NMA is the excessive amount of null messages

that is exchanged between partitions. Figure 3.11 shows the total amount of simulation events

41

3 Problem Analysis

processed versus the total amount of null messages that were exchanged in both partitions of

Simulation 1 and 2. The amount of null messages exceeds the amount of simulation events by

C
A

N

T
T
E

0

2

4

·107

E
v
e
n

t
s

p
r
o

c
e
s
s
e
d

[e
v
e
n

t
]

(a) Simulation 1

C
A

N

T
T
E

0

2

4

·107

E
v
e
n

t
s

p
r
o

c
e
s
s
e
d

[e
v
e
n

t
]

(b) Simulation 2

Figure 3.11: Comparison of total number of simulation events (blue) to null messages (red)

a factor of 40.

3.4 Analysis conclusion

This chapter analysed the two simulations presented in section 3.1. Both simulated networks

are mainly using cyclic and rate constrained message tra�c according to section 3.2. This

means that messages most likely pulse through the network. Which also means that there

will be time windows with a lot of events to process and time windows without any events to

process. As shown in section 3.3.2.2 the NMA produces a lot of null messages in order to jump

ahead in time. Therefore, it is not an appropriate scheduler for this kind of simulations. This

thesis proved true in section 3.3.2 in which both simulations were empirically evaluated for

their parallel potential. The amount of null messages exceeds the amount of simulation events

by a factor of 40. However, the analytical examination in section 3.3.1 as well as the empirical

examination in section 3.3.2 promise parallel potential for both simulations. Therefore, a new

scheduling strategy must be developed. It must decrease the amount of null messages and

will have to exploit the behaviour of both simulations in order to optimally raise the parallel

potential.

42

4 Optimization concept

This chapter presents the development of the parallel scheduling strategies. The main aim is to

develop parallel scheduling strategies, that are able to raise the parallel potential of Simulation

1 and 2 that was predicted in section 3.3.1.2 and 3.3.2.2. The null message algorithm is not

capable of doing this. Evidence is given in section 3.3.2.2. In a �rst step, a generic optimization

approach will be developed in order to reduce the excessive amount of null messages that

was measured in section 4.1. The main advantage of the generic optimization approach is

that it does not require any adjustments of Simulation 1 and 2. It will be usable in all kinds

of arbitrary simulations. The �rst step in developing the generic approach is to select an

alternative scheduling algorithm. This is done in section 4.1.1. In the following steps, the

selected scheduling algorithm is optimized in order to increase parallelism.

To further optimize the new scheduling strategies, the second step complements them by

exploiting domain speci�c knowledge about the simulation. This is described in section 4.2.

4.1 Generic optimization

According to section 3.2, the message tra�c of the simulated in vehicle networks is based on a

combination of cyclic CAN messages and TTE tra�c. For Simulation 1 and 2, the lookahead

between partitions was calculated with 6.28 µs, whereas the intervals of the cyclic CAN

messages for example, range between 10 ms and 2000 ms (see section 3.2.1). In relativity to the

lookahead, this leads to larger periods of time without any simulation events. As a consequence,

the message tra�c is kind of pulsing through the network in intervals as shown in Figure 4.1.

This behaviour causes corresponding simulation events and explains the excessive amount of

null messages that is observed in section 3.3.2.2.

4.1.1 Scheduling algorithm selection

The message characteristic of both simulations is similar to the one that the conditional NMA in

section 2.8.2.1 addresses. For Simulation 1 and 2 it seems to be the most promising scheduling

approach from those presented in section 2.8.2. The carrier null message approach from section

43

4 Optimization concept

Partition 1 t
Period of time without events

Partition 2

L

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

Figure 4.1: Simpli�ed representation of message tra�c as it occurs in Simulation 1 and 2

with two partitions according to section 3.3.2.1. Vertical dotted lines represent the

lookahead L between Partition 1 and 2 which is also the interval in which null

messages are exchanged.

2.8.2.2 improves lookahead. However, it does not help to skip longer periods of time at a

reduced rate of null messages. Using conservative time windows from section 2.8.2.3, is a

static and a less generic approach. It depends on domain speci�c knowledge to make it work.

Therefore, it can not be used out of the box. Null message cancellation will not be needed

when using the conditional NMA. The CNMAs uses null messages to exchange informations

during computation phase. Therefore, partitions will not need to exchange more than one

message with each other during EIT computation phase. The demand driven approach still has

a problem with excessive null message generation at larger periods of simulation time without

any simulation events. For this reason, the conditional NMA is chosen as foundation for the

development of parallel scheduling strategies for in vehicle networks.

4.1.2 Conditional null message algorithm basic approach

The basic working principle of the CNMA is introduced in section 2.8.2.1. This section describes

the CNMA and its optimizations, as it is realized as part of this work. The CNMA must alternate

between a common EIT computation phase and a common event processing phase as described

in section 2.8.2.1. The e�ciency of the algorithm is dependent on the way this alternation is

realized. Therefore, one major task is to specify when this alternation is supposed to happen,

in order to keep the amount of alternations and therefore, the e�ort of synchronization as low

as possible. Figure 4.2 illustrates the problem. Suppose both simulations are at simulation time

t2. The scheduler has to compute the EIT in order to process the next events. The scheduler

does not have any insight into the nature of the events to process. Furthermore, it does not

know, whether processing an event will create external events. For this reason, the scheduler

must assume that processing any event will spawn further external events. Processing e1 in

44

4 Optimization concept

e2
Partition 1 t

Period of time without events

Partition 2
e3

L

e1

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

Figure 4.2: Generation of external events at unknown points in simulation time, makes it

di�cult to reduce the amount of necessary synchronization.

Partition 2 at t8 for example, might produce a new event e2 which is sent to Partition 1. This

event will arrive Partition 1 at t9, since it takes at least the lookahead L to transfer the event.

Processing e2 in Partition 1 at t9 will in return produce another external event e3 that will

arrive Partition 2 at t10.

The basic scheduling algorithm is supposed to follow a generic approach in order to optimize

both simulations without putting further simulation speci�c development e�ort into it. For

this reason, the CNMA approach realized in this work, determines the event with the smallest

timestamp, among all partitions at computation phase. This event‘s timestamp will form the

new EIT. Assume both partitions advanced their simulation time to t2. This is shown in Figure

e1

e2
Partition 1 t

Period of time without events

Partition 2
e3

L

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

Figure 4.3: Calculating the next global EIT is done by determining the event with the smallest

timestamp over all partitions. The timestamp of that event will for, the new global

EIT.

4.3 by the black arrow facing down. The events to be processed next are at t8 for both partitions,

marked in red. Therefore, EIT = min(t8, t8) = t8. Both partitions can safely advance their

simulation time to t8 and process the events at t8. However, processing only the events at t8,

will not yield the desired parallel potential. Figure 4.4 shows an example situation, in which

the simulation is basically processed sequentially. The events of Partition 1 and 2 are scheduled

45

4 Optimization concept

Partition 1 t
Period of time without events

Partition 2

L

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

Figure 4.4: Basically sequentialized parallel simulation due to simulation events at uneven

points in simulation time.

at uneven points in simulation time. In this particular example the partitions would alternate

with event processing.

As a solution to this problem and in order to further increase the parallelism, the CNMA

must exploit the lookahead between neighbouring partitions. This is shown in Figure 4.5.

Partition 1 t
Period of time without events

Partition 2

L

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

Figure 4.5: Exploiting the lookahead between partitions (red background), in order to further

increase the parallelism.

In this example the current simulation time has reached t2. After EIT computation phase,

both partitions will advance the simulation time to t8. Partition 1 will process the event at

t8. However, new events spawned as a result of event processing, will not arrive at Partition

2 earlier than t8 + L. The same goes for events that are sent from Partition 2 to Partition

1. For this reason, both partitions can safely process every event with a timestamp smaller

t8 +L. That way, both partitions are capable of processing events in parallel, which leads to an

increased level of parallelism. After processing all safe events, the partitions will enter another

EIT computation phase. In this particular example the lookahead between both partitions is

assumed to be equal. However, the algorithm will also work with varying lookahead between

partitions.

46

4 Optimization concept

4.1.3 Increasing parallelism

Section 4.1.2 explains how the CNMA exploits the lookahead between partitions at EIT compu-

tation phase in order to increase parallelism. This section aims at further improving parallelism

by introducing a second computation phase that takes external events into account of the EIT

calculation.

Consider the simulation shown in Figure 4.6. It consists out of three partitions. Figure 4.7

Partition
2

Partition
1

Partition
3

2L L

Figure 4.6: Example simulation consisting out of three partitions. Attend the di�ering looka-

head between the partitions.

shows an exemplary event processing scenario. In this example all three partitions �nish

their processing phase at t1 and enter the next EIT computation phase. For this reason, they

t8

Partition 1 t

Partition 2

L

t1 t2 t3 t4 t5 t6 t7 t9 t10 t11

Partition 3

Figure 4.7: EIT computation phase step 1 with red events depicting the earliest external events

that might be received.

exchange their ECOTs. This is shown by the grey arrows in Figure 4.7. Each grey arrow

represents the ECOT of the sending partition to the receiving partition. As stated in section

2.8.1, the ECOT represents the earliest possible time that a partition might receive an event

47

4 Optimization concept

from the sending partition. All under the assumption, that no further messages will be received

by that partition, having a smaller timestamp. According to Figure 4.7, Partition 1 receives

ECOTs t7.5 from Partition 3 and t8.5 from Partition 2. Partition 2 receives the ECOTs t5.5 and

t7.5. Partition 3 receives ECOTs t7.5 and t8.5. The EIT is calculated as the minimum ECOT out

of all ECOTs. Therefore, the EIT computation phase �nishes with t5.5 as new EIT. According

to the current algorithm all three partitions advance their simulation time to t5.5 and process

all events with a timestamp smaller than t5.5, as shown in Figure 4.8. However, taking a closer

t8

Partition 1 t

Partition 2

L

t1 t2 t3 t4 t5 t6 t7 t9 t10 t11

Partition 3

Figure 4.8: Partitions advancing in simulation time to t5.5

look at Figure 4.8, one can see that all three partitions might advance their simulation time

even further by considering that Partition 2 might receive an external event at t5.5. Therefore,

the CNMA will be extended by a second computation step. This step will be called phase 2

calculation through the remainder of this work. In Figure 4.9 Partition 2 might receive an

external event at t5.5. This external event has a smaller timestamp than the internal event

that the previous ECOT calculation is based on. For this reason, the ECOT of Partition 2 is

recalculated taking the timestamp of the external event into account. Processing the external

event, might result in Partition 2 sending events to Partition 1 and 3. The external events will

be received at t6.5 in Partition 3 and at t7.5 in Partition 1. Therefore, the ECOT of Partition 2 to

Partition 1 is t7.5 and from Partition 2 to Partition 3 it is t6.5. This is shown in Figure 4.9. In

conclusion by taking the external event into the ECOT calculation, the EIT of Partition 1 is

increased by 2, whereas for Partition 3 it is increased by 1 (see Figure 4.9).

48

4 Optimization concept

Increased EIT

t8

Partition 1 t

Partition 2

L

t1 t2 t3 t4 t5 t6 t7 t9 t10 t11

Partition 3

Increased EIT

Figure 4.9: EIT computation phase step 2 also considers the EOTs to increase the lookahead

and with it the amount of potential events that can be safely processed.

4.1.4 Final conditional null message algorithm approach

This section presents the �nal operating principle of the CNMA approach that is implemented

in this work. Figure 4.10 shows the computation steps of the CNMA based synchronization

approach.

Broadcast
earliest internal event

Calculate
ECOT Matrix

Calculate
Min ECOT Array

Phase 2
Calculation

Repeat until finished

EIT
Enter EIT

Computation Phase

Process all events with
Timestamp < EIT

Figure 4.10: Computation steps of the CNMA based synchronization approach.

4.1.4.1 Broadcast earliest internal event

Whenever a partition processed all events inside its FES with a timestamp smaller than the

EIT, it is blocked and must enter another EIT computation phase. The EIT computation phase

is initiated by each partition broadcasting the timestamp of the next events inside its FES to all

other partition. This event is called the earliest conditional event throughout the remainder of

this work. It will be the next event that is processed under the condition that the partition will

not receive any further events with a smaller timestamp.

49

4 Optimization concept

4.1.4.2 Calculate ECOT Matrix

At receiving a broadcast from another partitionn, the earliest conditional event’s timestamp is

used to calculate the ECOT matrix at index [n, n] by adding the lookahead between sending and

receiving partition. The ECOT matrix is supposed to store the ECOTs between all partitions.

Considering the example from Figure 4.8, the resulting ECOT matrix will look as shown in

Table 4.1. The algorithm responsible for the creation of the ECOT matrix is shown in Listing 1.

Table 4.1: Resulting ECOT matrix derived from Figure 4.8, with earliest conditional event

timestamps in bold.

From / To Partition 1 Partition 2 Partition 3

Partition 1 5.5 7.5 8.5

Partition 2 8.5 6.5 7.5

Partition 3 7.5 5.5 4.5

Algorithm 1 CNMA ECOT broadcast

1: procedure calculateECOTMatrix

2: for each partition sender ∈ Partitions do . Iterate sending partitions.

3: for each partition receiver ∈ Partitions do . Iterate receiving partitions.

4: ECOTMatrix[sender][receiver] =

5: EarliestEvent(sender) + Lookahead(sender, receiver)

6: end for
7: end for
8: end procedure

4.1.4.3 Calculate min ECOT Array

The min ECOT array is derived from the ECOT matrix. It contains the minimum ECOT for

each partition. Considering the ECOT matrix from Table 4.1, the minimum ECOT for Partition

2 is 5.5. The �nal ECOT array is shown in Table 4.2. The corresponding algorithm is shown in

Table 4.2: Resulting min ECOT array derived from ECOT matrix 4.1.

ECOT

Partition 1 7.5

Partition 2 5.5

Partition 3 7.5

Listing 2.

50

4 Optimization concept

Algorithm 2 Minimum ECOT array calculation.

1: procedure calculateMinECOTArray

2: for each partition receiver ∈ Partitions do . Iterate receiving partitions.

3: ECOTArr[receiver] =∞
4: for each partition sender ∈ Partitions do . Iterate sending partitions.

5: if receiver 6= sender then
6: if ECOTArr[receiver] > ECOTMatrix[sender][receiver] then
7: ECOTArr[receiver] = ECOTMatrix[sender][receiver]

8: end if
9: end if

10: end for
11: end for
12: end procedure

4.1.4.4 Calculate phase 2

Phase 2 calculation tries to further extend the EIT for individual partitions. Therefore, it is

checking each partition for an ECOT that is smaller, than the earliest scheduled internal event.

An example for such an ECOT is shown in Figure 4.7, Partition 2 at t5.5. In order to prevent

causality violations, the algorithm must iterate the ECOTs, starting with the smallest one and

advance in increasing timestamp order. In order to �nd the partition with the smallest ECOT,

the ECOT array from section 4.1.4.3 is iterated as shown in Listing 3. The phase 2 algorithm is

Algorithm 3 Gets the next partition with an ECOT smaller than the earliest internal event in

advancing order.

1: procedure getNextPhase2Partition
2: nxtp = −1;

3: for each partition p ∈ Partitions do . Iterate over partitions.

4: if p not yet processed then
5: if Timestamp of earliest internal event of p > ECOTArray[p] then
6: if nxtp == −1 or ECOTArray[p] < ECOTArray[nxtp] then
7: nxtp = p
8: end if
9: end if

10: end if
11: end for
12: return nxtp

13: end procedure

shown in Listing 4. After �nishing the phase 2 calculation, the min ECOT array contains the

51

4 Optimization concept

Algorithm 4 Performs the phase 2 calculation.

1: procedure phase2Calculation
2: nxtp = getNextPhase2Partition();

3: while nxtp 6= (−1) do
4: for each partition p ∈ Partitions do . Iterate over partitions.

5: if p 6= nxtp then
6: ECOTMatrix[nxtp][p] = ECOTArray[nxtp] +AdjMatrix[nxtp][p]
7: end if
8: end for
9: calculateMinECOTArray() . Recalculate the min. ECOT array.

10: end while
11: end procedure

EITs for the di�erent partitions.

4.1.4.5 Final algorithm

The �nal algorithm that determines the EIT for a speci�c partition is shown in Listing 5. It

begins with a broadcast of the earliest conditional event (see section 4.1.4.1). It then waits for

receiving the earliest conditional event timestamps from all other partitions of the parallel

simulation. In the next step it calculates the ECOT matrix and the minimum ECOT array (see

sections 4.1.4.2 and 4.1.4.3). The following Phase 2 calculation is based on the minimum ECOT

array (see section 4.1.4.4). After the Phase 2 calculation, the minimum ECOT array contains

the EIT for every partition of the simulation and is returned for the respective partition.

Algorithm 5 Final algorithm to calculate performs the EIT calculation phase.

1: procedure EITCalculationPhase
2: Broadcast earliest conditional event timestamp.

3: Receive all earliest conditional event timestamps from other partitions.

4: calculateECOTMatrix()

5: calculateMinECOTArray()

6: phase2Calculation()

7: return ECOTArr[PartitionNumber] . Return new EIT.

8: end procedure

52

4 Optimization concept

4.2 Domain specific optimization

Section 4.1 introduces the generic approach of the new scheduling concept developed in this

work. The advantage of the generic scheduler is, it can be used out of the box for any kinds of

parallel simulation. No adjustments on the simulation code will be necessary. However, its

performance bene�ts are somewhat limited due to the generic approach that does not have

any insight about the simulation’s internals. Exploiting knowledge about the simulation’s

internal behaviour might help to further improve performance of the parallel scheduler. This

section presents the second part of the scheduling concept that is o�ering a way, to integrate

simulation speci�c knowledge into the scheduling concept.

4.2.1 Weak point of the generic optimization

Section 4.1.4 presents the �nal CNMA approach. The CNMA scheduler is basing its EIT

calculation on the next earliest conditional event of the parallel simulation’s partitions. A

weakness of this method is that the majority of events inside a partition’s FES will not produce

any external events. Therefore, a lot of synchronization is based on events that will never

produce any external events. Consider the situation shown in Figure 4.11. Only the events

Partition 1 t

Partition 2
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

Figure 4.11: Example situation in which the generic approach fails to exploit the maximum

parallel potential.

of Partition 2 at t5 and t10 create external events which Partition 2 sends to Partition 1. At

its current state, the generic CNMA approach needs �ve synchronization steps in order to

advance simulation time past t10 as shown in Figure 4.12.

4.2.2 Problem-solving approach

To prevent the scheduler from including events that do not create external events into the

synchronization process, it must get an ability to di�erentiate events into those that do create

external events and those that do not. Knowing what events create external ones, the scheduler

53

4 Optimization concept

Partition 1 t

Partition 2
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

Figure 4.12: The generic CNMA approach from section 4.1 needs �ve synchronization steps to

advance simulation time past t10.

needs for the example situation from Figure 4.11 just two synchronization points as shown

in Figure 4.13. The integration of this idea is straight forward. The broadcast of the earliest

Partition 1 t

Partition 2
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

Figure 4.13: Knowing in advance which events create external events, reduces the amount of

synchronization points to two.

internal event timestamp (see section 4.1.4.1) is slightly adjusted. Instead of broadcasting the

timestamp of earliest internal event, the timestamp of the earliest internal event that creates

external events is broadcast. To do this, the simulation itself must be adjusted in order to

enable the scheduler to di�erentiate between events. The required changes to the simulation

and the required implementation steps are examined in chapter 5.

4.2.3 Basic thoughts towards a generally applicable domain specific
scheduling strategy

This section presents and discusses the basic thoughts towards a generally applicable domain

speci�c scheduling strategy. Before developing a successful concept, a few important facts

must be considered. Figure 4.14 shows an abstract depiction of a typical event pipeline, as it

occurs in all DES. The underlying simulation consists out of two partitions, Partition 1 and

Partition 2. Partition 1 contains an event source that generates events in �xed time intervals.

54

4 Optimization concept

Event
Generator

Event
Processor 1

Event
Processor 2

Event
Sender

Event
Receiver

Partition 1 Partition 2

t

t1 t2 t3 t4

Figure 4.14: Typical event pipeline with several sequential event processing modules with and

without processing delays.

Furthermore, it contains several event processing modules, with or without processing delays

and an Event Sender that forwards events to Partition 2. Partition 2 contains an Event Sink

that receives the events from the Event Sender and discards them.

In this particular example, the Event Source generates a new event at t1. It is forwarded to

Event Processor 1 with zero processing delay. Event Processor 1 however, has a processing

delay ∆P1. Therefore, Event Processor 2 receives the event at t2. Event Processor 2 also has

a processing delay ∆P2 so that the Event Sender receives the event at t3. The Event Sender

forwards it over partition borders to the Event Receiver in Partition 2. This takes a considerable

amount of time, consisting out of the processing delay inside the Event Sender ∆P4, plus the

transmission delay ∆L of the event between both partitions. Therefore, the event reaches the

Event Receiver at t4.

Assuming that ∆P1, ∆P2 and ∆P4 were �x delays, this example would be an ideal candidate

for domain speci�c optimization. At time t1 the scheduler could predict that the next external

event will be received by Partition 2 at t4 = t1 + ∆P1 + ∆P2 + ∆P4 + ∆L. Therefore, both

partitions can advance in simulation time to t4.

However, reality di�ers from such ideal examples. Therefore, a number of di�erent situations

must be considered.

4.2.3.1 Asymmetric event generation

In general, simulations do not contain just one single event source. Instead, they contain

a number of di�erent event sources. These sources generate events at di�erent points in

simulation time. This leads to di�erent points in simulation time that external events will be

sent. These points in simulation time will be called time to broadcast (TTB) throughout the

remainder of this work. Figure 4.15 shows an example of asymmetric generation of events that

create external events when being processed. In conclusion, the scheduler must obtain a global

55

4 Optimization concept

Event Source 1
fixed interval

t

Event Source 2
fixed interval

t

Event Source 3
arbitrary

t

ts

ts1

ts2

ts3

Figure 4.15: Example of asymmetric event generation by three di�erent event sources in one

simulation. The red dotted line denotes the time of the next synchronization.

view on all events that might cause external events in the future. In this particular example

the scheduler must know at synchronization point ts that there will be events generated at ts1,

ts2 and ts3.

4.2.3.2 Processing delays

Processing delays are an ideal example of domain speci�c knowledge as a means of increasing

lookahead between partitions. However, processing delays are not necessarily �xed time

intervals. Therefore, they must be di�erentiated into �xed processing delays and variable

processing delays.

4.2.3.2.1 Fixed processing delays Fixed processing delays can be directly used by the

scheduler as a means of increasing lookahead between partitions. If the �xed processing delay

between an event source in Partition 1 until the event is sent to an event receiver in Partition 2

was 5 s, the scheduler can add this delay to the lookahead between Partition 1 and Partition 2.

Thus increasing the total lookahead between both partitions.

4.2.3.2.2 Variable processing delays Variable processing delays can not be directly used

by the scheduler since they correspond to a time window in simulation time rather than a �xed

point in time. They can occur whenever future event processing is based on decisions. Consider

the example in Figure 4.16. Event Processor 2 forwards events directly to the Event Sender

or Event Processor 3 in a randomly fashion. That implies, at event creation, the scheduler

does not know at what time the event will reach the Event Sender and at what time it will

be sent to Partition 2 as an external event. However, the scheduler can carefully assume that

the event will always take the shortest path through the simulation. Doing so, it will always

communicate the earliest possible time that an external event might be sent. In conclusion, the

56

4 Optimization concept

Event
Source

Event
Processor 1

Event
Sender

Event
Receiver

Partition 1 Partition 2

Event
Processor 2

Event
Processor 3

DP1 DP2 DP3

DL

Figure 4.16: Example of variable processing delay. Event Processor 2 forwards events directly

to the Event Sender or Event Processor 3 in a randomly fashion.

scheduler must always assume the smallest processing delay in case of variable processing

delays.

However, always assuming the smallest processing delay is not su�cient for a reliable

synchronisation concept. Figure 4.17 shows why. At t1 the simulation generates an internal

Event Source t

Event Processor
1

t

Event Processor
2

t

Event Processor
3

t

Event Sender t
t1 t2 t3 t5t4 t6 t7 t8

Figure 4.17: Example of variable processing delay and synchronisation problem.

event. This event will travel the event pipeline shown in Figure 4.16. Since the scheduler does

not know which way the event will take at this point of time, it assumes the smallest processing

delay. That means it expects an external event being generated at t4. At t3, yet another internal

event is created and as a result the scheduler expects an external event being generated at t8.

At t5, a new synchronization cycle is initiated. At this cycle the scheduler will expect that

external event that was estimated for t4, is already sent. Without further informations it will

assume that the next external event will occur at t8. However, since the �rst external event

has not yet been sent because it did not take the smallest processing delay, it will be sent at t7.

Thus causing a temporal violation at t7, which must not happen.

In conclusion, the scheduler must keep track of all predicted external events and their actual

time of delivery.

57

4 Optimization concept

4.2.3.2.3 Keeping track of events Keeping track of events inside the event pipeline as

required by paragraph 4.2.3.2.2, requires each event carrying a unique identi�er. In most

simulation systems this is already the case. Often times though, the event will be transformed,

deleted and recreated or in other ways modi�ed. This causes the event loosing its original

unique identi�er and complicates event tracking. In conclusion, the new scheduler must get

some kind of event tracking mechanism that allows to keep track of events, even when they

change their unique identi�er or get modi�ed in any other way.

4.2.4 Final domain specific optimization approach

This section presents the core aspects of the �nal domain speci�c scheduling approach. The

scheduling architecture is explained in section 4.2.4.1. It is followed by an explanation on

how to obtain the global view on all possible external events in section 4.2.4.2 and the event

tracking in section 4.2.4.3.

4.2.4.1 Scheduler architecture

The domain speci�c scheduler is based on the CNMA scheduler with phase two optimization,

which was developed and introduced in section 4.1. Figure 4.18 displays the underlying

class architecture. The interface IDspScheduler contains the required functions to realize

IDspScheduler

+ registerSyncTimestamp
+ finishSyncTimestamp

+ updateSyncId

CDspAdvCondNullMessageProtocol

CAdvCondNullMessageProtocol

+ …

cParsimProtocolBase

+ …

Figure 4.18: Class architecture for the domain speci�c scheduler approach.

the global view on possible external events and to realize event tracking. The interface is

implemented by the concrete domain speci�c scheduler CDspAdvCondNullMessageProtocol.

Since the new scheduler is derived from CAdvCondNullMessageProtocol, it acts like the

58

4 Optimization concept

CAdvCondNullMessageProtocol scheduler in case there is no domain speci�c knowledge

available. Whenever domain speci�c knowledge is available, it will use the domain speci�c

information for synchronization.

4.2.4.2 Obtaining a global view on all possible external events

Whenever a simulation module creates an event that will create an external event in the future,

it must inform the scheduler. The time of the external event must be calculated by the calling

module. This is done according to section 4.2.3.2.2. The calculated timestamp and the event id

are then passed to the scheduler by calling registerSyncTimestamp.

The scheduler keeps track of all announced timestamps, by keeping them inside a priority

queue, which is sorted in time correct order. Basically the scheduler now contains two event

sets. The original FES and the priority queue with timestamps of potential external events as

shown in Figure 4.19. While the original FES contains all events of the simulation, the priority

Event
1

Event
2

Event
3

Event
4

t

Event
5

Event
6

Event
…

Ext. Event
…

Original Future Event Set (FES)

Priority Queue external events

Ext. Event
1

Ext. Event
2

Figure 4.19: The domain speci�c scheduler contains two di�erent event queues. The original

FES as well as the priority queue with timestamps of possible external events.

queue just contains the possible external events. The scheduler is adjusted as follows. The

Algorithm 6 Calculating the ECOT now also includes the domain speci�c knowledge.

1: procedure getCondEOT
2: tDspEOT = getNextDspTimestamp();

3: if tDspEOT is valid timestamp then
4: return tDspEOT;

5: else
6: return cAdvCondNullMessageProtocol::getCondEOT();

7: end if
8: end procedure

ECOT is calculated by getCondEOT as shown in Listing 6. This function gets the next domain

59

4 Optimization concept

speci�c timestamp to consider for synchronization in line 2. If a domain speci�c timestamp

is available and valid, it will be returned in line 3. Otherwise, the generic synchronization

timestamp of the generic synchronization approach is returned in line 6.

The next domain speci�c timestamp to consider for synchronization is determined by

function getNextDspTimestamp as shown in Listing 7. The original CNMA synchronization

Algorithm 7 Determines the next domain speci�c timestamp to consider at synchronization.

1: procedure getNextDspTimestamp
2: while Priority queue NOT empty do
3: tDspEOT = Take next DSP from priority queue;

4: if External event at tDspEOT not yet sent then
5: if tDspEOT > Current Time then
6: return tDspEOT

7: else
8: return Invalid;

9: end if
10: else
11: Remove tDspEOT from priority queue;

12: end if
13: end while
14: return Invalid;

15: end procedure

algorithm as described in section 4.1.4.5, is unchanged. However, it is now fed with an ECOT

derived from domain speci�c knowledge or a generic ECOT determined by the generic CNMA

algorithm.

4.2.4.3 Event tracking

Event tracking after registration is realized by two additional functions, updateSyncId and

�nishSyncTimestamp. The function updateSyncId is used to tell the scheduler that one of the

previously registered events changed its unique identi�er. Input are the previous identi�er and

the new identi�er.

Telling the scheduler that an external event has been sent to another partition, is done by

using the function �nishSyncTimestamp. It takes the external events unique identi�er as input.

Hence the e�ort to keep track of events when passing the event pipeline.

Under ideal circumstances, the external event is sent at the predicted time and the function

is therefore called at the same time. However, in situations with variable processing delays, as

60

4 Optimization concept

described in section 4.2.3.2.2, it might get called at some point later in simulation time. It must

never be called earlier. In that case a causality violation would be created.

61

5 Concept implementation

This chapter presents the implementation of the �nal parallel simulation strategy, based on the

optimization concept from section 4. Section 5.1 gives a brief overview of OMNET++’s parallel

simulation system architecture and explains how to implement a new parallel scheduler. Section

5.2 presents the implementation of the CNMA scheduler. The domain speci�c optimization

possibilities introduced in section 4.2, is further examined in section 5.3.

5.1 The OMNET++ parallel simulation subsystem

Omnet++ was initially not intended for parallel simulation. An extension to OMNET++ that

enables parallel simulation is published in [63]. It presents the new parallel and distributed

system architecture. It introduces two parallel simulation schedulers for OMNET++, the

NMA and the Ideal Simulation Protocol. Figure 5.1 shows the basic system architecture. The

Simulation Model

Simulation Kernel

Communications Library (MPI, sockets, etc.)

Parallel Simulation subsystem

Synchronization

Partitioning

Communication

Event scheduling,
Sending, receiving

Figure 5.1: Architecture of OMNETT++ PDES implementation. [63]

parallel simulation subsystem consists out of three layers. The communication layer abstracts

communication between partitions. Current implementations support sockets, named pipes

and MPI. The partitioning layer is responsible for the instantiation of the parallel simulation

62

5 Concept implementation

and for distributing the simulation modules on the di�erent partitions. Every partition gets a

complete model of the simulation. However, the partitioning system will replace modules that

Partitioned Simulation Model

Module
1

Proxy
Module

3

Module
2

Proxy
Module

4

Partition 1

Proxy
Module

1

Module
3

Proxy
Module

2

Module
4

Partition 2

Figure 5.2: Example of a partitioned simulation model with two proxy modules per parti-

tion that forward any incoming events to the corresponding module at the other

partition.

do belong to another partition by proxy modules as shown in Figure 5.2. When sending an

event to a proxy module, the event will be intercepted by the partitioning system and forwarded

via the communication layer to the partition containing the target simulation module. Finally

the synchronization layer is representing the actual synchronisation algorithm which can

follow either a conservative or an optimistic approach.

5.2 The conditional null message algorithm scheduler

The CNMA scheduler is implemented in two steps. In step one the basic approach from section

4.1.2 is implemented. The implementation highlights are presented in section 5.2.1. In step

two, the parallelism is increased as described in section 4.1.3. The implementation details are

presented in section 5.2.4.

5.2.1 Basic approach implementation

The basic CNMA scheduler is implemented in class cCondNullMessageProtocol which is

derived from class cParsimProtocolBase which is part of the OMNET++ synchronisation layer

(see section 5.1).

63

5 Concept implementation

5.2.2 Distributed lookahead calculation

In this particular implementation, the lookahead calculation is just done once at simulation start

for performance reasons. When initialising the simulation, the CNMA calculates the lookahead

to all other partitions. Each partition is able to calculate the lookahead to its direct neighbours.

However, for the CNMA each partition must also know the lookahead to partitions that are

Partition
2

Partition
1

Partition
3

2L L

Figure 5.3: Example simulation with Partition 1 and Partition 3 beeing indirectly connected

via Partition 2.

not directly connected as shown in Figure 5.3. For this reason, cCondNullMessageProtocol

implements a distributed lookahead calculation.

It starts by calculating the lookahead to each neighbouring partition that is directly connected

and broadcasting this information to all other partitions as shown in Listing 5.1.

1 void cCondNullMessageProtocol::broadcastSetupMessage()
2 {
3 cCommBuffer *buffer = comm->createCommBuffer();
4 for(int i = 0; i < numSeg; i++) {
5 // Calculate lookahead to partition i.
6 // m_MAX_TIME stands for no direct connection.
7 segInfo[i].lookahead = lookaheadcalc->getCurrentLookahead(i);
8 buffer->pack(segInfo[i].lookahead);
9 }

10

11 // Broadcast the calculated lookahead to all other partitions.
12 for(int i = 0; i < numSeg; i++) {
13 comm->send(buffer, TAG_SETUP_MESSAGE, i);
14 }
15

16 comm->recycleCommBuffer(buffer);
17 }

Listing 5.1: Calculating and broadcasting local lookaheads

64

5 Concept implementation

Since the partition can not yet calculate the total lookahead to partitions that are not directly

connected, getCurrentLookahead returns the maximum time as lookahead. This will be �xed on

the receiving part of the lookahead calculation. On the receiving side, the lookahead broadcasts

get sorted into an adjacency matrix. The adjacency matrix stores lookaheads between all

partitions. Each row represents a sending partition, whereas each column represents a receiving

partition. Table 5.1 shows the adjacency matrix for the simulation shown in Figure 5.3. After

Table 5.1: Example adjacency matrix for the simulation from Figure 4.6

Partition 1 Partition 2 Partition 3
Partition 1 0 2L inf

Partition 2 2L 0 L

Partition 3 inf L 0

receiving the lookahead broadcasts from all other partitions, the adjacency matrix is used to

�nd the lookaheads from the current partition to all other partitions of the parallel simulation.

This is done by feeding the adjacency matrix the the Dijkstra algorithm for shortest path

calculation.

1 // Instantiate Dijkstra algorithm and feed adjacency matrix.
2 CDijkstraOVsquare djks(m_AdjMatrix);
3 // Get process ID of the current partition.
4 int procId = comm->getProcId();
5 // Iterate partitions including current partition (L=0).
6 for (int i = 0; i < numSeg; i++) {
7 // Store the calculate lookahead inside lookahead array.
8 lookaheadArr[i].lookahead = djks.GetShortestPath(procId, i);
9 }

Listing 5.2: Calculating and broadcasting local lookaheads

The �nal lookahead array that is generated by listing 5.2 contains the lookaheads from the

current partition, to all other partitions as shown in Table 5.2.

Table 5.2: Final lookahead array of Partition 1 after shortest path calculation using the Dijkstra

algorithm.

Partition 1 Partition 2 Partition 3
Partition 1 0 2L 3L

65

5 Concept implementation

5.2.3 Basic synchronisation

The basic synchronisation algorithm as described in section 4.1.2 is realized inside cCond-

NullMessageProtocol::takeNextEvent. It is shown in listing 5.3.

1 // Cycle until a safely processable event is detected.
2 cEvent *event;
3 while (true) {
4 // Get next event to process from fes.
5 event = sim->msgQueue.peekFirst();
6 // Verify that timestamp is below EIT.
7 if (event->getArrivalTime() <= m_EarliestInputTime) {
8 // This even can be processed safely.
9 break;

10 }
11 else {
12 // EIT reached, initiate new synchronization cycle.
13 runSynchronizationCycle();
14 // Keep waiting until EIT is raised.
15 if (!receiveBlocking())
16 return NULL;
17 }
18 }
19

20 // Remove event from FES and return it.
21 cEvent *tmp = sim->msgQueue.removeFirst();

Listing 5.3: Basic synchronisation algorithm.

It peeks at the next processable event inside the FES without removing it. The algorithm then

checks, wether its oricessable by verifying its timestamp is below the calculated EIT. Is this

the case, the event is processed. If that is not the case, a new synchronisation cycle is initiated

in order to calculate a new EIT.

5.2.4 Increased parallelism implementation

This section presents the implementation of the CNMA including the phase 2 calculation

developed in section 4.1.3. After initiating a new synchronization cycle, each partition waits

until it receives the EOTs from all other partitions of the parallel simulation. Deciding whether

a synchronization cycle is complete is realized inside a �nite state machine. Whenever a new

synchronization is running, it keeps track of all received EOT broadcasts. The FSM switches

66

5 Concept implementation

into ready state under the condition that an EOT broadcast was received from every partition

of the simulation.

The �nal EIT calculation is realized inside calculateEIT shown in Listing 5.4. It is called

whenever a running synchronization cycle �nishes.

1 simtime_t cAdvCondNullMessageProtocol::calculateEIT()
2 {
3 ...
4 // Calculate initial ECOT matrix (see section 4.1.4.2).
5 calculateECOTMatrix();
6 // Calculate initial ECOT array (see section 4.1.4.3).
7 calculateMinECOTArray();
8

9 int sender = -1;
10

11 // Calculate phase 2 (see section 4.1.4.4).
12 while((sender = getNextPhase2Partition()) != -1) {
13 for(int receiver = 0; receiver < numSeg; receiver++) {
14 if(receiver != sender) {
15 if ((m_MinECOTArray[sender] != m_MAX_TIME) &&
16 (m_AdjMatrix[sender][receiver] != m_MAX_TIME)) {
17 m_ECOTMatrix[sender][receiver] =
18 m_MinECOTArray[sender] +
19 m_AdjMatrix[sender][receiver];
20 }
21 else {
22 m_ECOTMatrix[sender][receiver] = m_MAX_TIME;
23 }
24 }
25 }
26 calculateMinECOTArray();
27 }
28 // Return the new EIT
29 return m_MinECOTArray[comm->getProcId()];
30 }

Listing 5.4: Final EIT algorithm implementation including phase 2 calculation according to

section 4.1.4.5.

67

5 Concept implementation

5.3 Domain specific optimization realization

This section presents the implementation of the domain speci�c optimization approach. As

already mentioned in section 4.2, domain speci�c knowledge about the internal workings of

the simulation is necessary. Analysing a simulation in order to gain domain speci�c knowledge,

proved to be a time consuming task. Therefore, only Simulation 1 is investigated in order to

prove the concept is working.

Section 5.3.1 presents the event pipeline of the TTE partition and is followed by section 5.3.2

which presents the event pipeline of the CAN partition. Section 5.3.3 discusses possibilities on

how to exploit the insights about the CAN event pipeline (For partitioning details see section

3.3.2.1). Section 5.3.4 presents the implementation of the domain speci�c approach in Partition

1.

5.3.1 The TTE event pipeline

Figure 5.4 shows the TTE event pipeline. The reason for the higher complexity is because the

Leaving partition

TTE Node

Source
App

VL*CTC
RC Incom.

VL*
RCQuBuf.

Shaper MAC

Phy

MAC InControl

Phy Switch
VL*CTC

RC Incom.
VL*

RCQuBuf.
Shaper MAC

Phy

Figure 5.4: TTE event pipeline

TTE event pipeline does not have any static delays. Instead it consists out of a sequence of

modules with variable delays, marked in orange. The bu�ers as well as the tra�c shapers add

variable delay to passing events depending on the current tra�c volume and tra�c priorities.

In contrast to the CAN event pipeline the TTE event pipeline seems less complex at �rst.

However, the e�ort to exploit domain speci�c knowledge is higher and requires a signi�cant

amount of changes in existing simulation code. This is why exploitation of domain speci�c

knowledge is implemented for the CAN event pipeline in a �rst attempt.

5.3.2 The CAN event pipeline

The CAN event pipeline of Partition 1 is shown in Figure 5.5. Multiple messages are created at

68

5 Concept implementation

Leaving partition

CAN Gateway Node

CAN Node CAN Bus

Source
App

Buffer
out

CAN node
Port

CAN Bus
Port

CAN Bus
Logic

Source
App

CAN/TTE Gateway

Buffer
CAN Node

Port
Router

CAN Bus
Port

Gateway Base

Buffer Transform

Time Triggered Ethernet

Gateway
App

RC
Shaper

Ether Mac
FullDuplex

RCBuffer

40us

Figure 5.5: CAN message pipeline.

di�erent intervals inside the Source App module. Each event passes an output bu�er module

and leaves the simulated CAN node through the CAN node port module. It then passes the

CAN bus modules. The CAN bus logic module is responsible for event arbitration. This module

is the �rst of the event pipeline that might delay the event. Next, the event enters the CAN

gateway node. The CAN gateway node is responsible for transforming the event into a TTE

event. The Router module decides whether CAN event are supposed to be forwarded into the

TTE network or not. In case the router forwards a event towards the TTE network, the event

enters the transform module next. The transform module transforms a CAN message into a

TTE event. It possesses a �xed processing delay of 40 µs. After leaving the transform module,

the event is passed on to the TTE tra�c shaper. The tra�c shaper is responsible to forward

events according to their tra�c class and priority. This module might add further delay until

the actual event is sent. Finally the event leaves the CTG through the Ether MAC Full Duplex

module. By leaving the CTG, the event is also becoming an external event since the receiving

switch Switch 1 is assigned to Partition 2. Thus the event is crossing partition borders.

5.3.3 Exploiting the CAN event pipeline

Section 5.3.2 introduced the CAN event pipeline. It also pointed out the simulation modules

that may add delays to the event processing. Figure 5.6 shows the delays of the CAN event

pipeline in an idealized way. The pipeline contains two unspeci�c delays and one speci�c

delay of 40us. The pipeline also contains a branch that only forwards speci�c events to the

TTE network. Only these events will be sent to Partition 2 and thus become external events.

69

5 Concept implementation

CAN Bus
Logic

Router

RC
Shaper

RCBuffer

? Buffer

Transform

? TTE? Buffer

40us ?

Discard if not forwarded
to TTE network

?

Figure 5.6: Idealized view on all delays inside the CAN event pipeline.

For this reason, the most convenient place to exploit domain speci�c knowledge is behind the

router module. The transform module is located behind the transform module and is the only

module with a static delay. In a �rst attempt on using domain speci�c knowledge, this static

delay is used in order to increase the lookahead between both partitions. This means that from

the time of event creation until leaving Partition 1 there will always be a delay of at least 40 µs.

However, it might be even longer depending on the delays that will be added by the CAN bus

logic and the tra�c shaper module.

5.3.4 Implementation of the domain specific approach in Partition 1

The transform module is represented by class GatewayTransformation. The domain speci�c

implementation starts with intercepting each event arriving at this module. This is done by

modifying GatewayTransformation::handleMessage as shown in listing 5.5.

1 void GatewayTransformation::handleMessage(cMessage *msg)
2 {
3 ...
4 if (...){
5 if (m_pScheduler != nullptr) {
6 m_pScheduler->registerSyncTimestamp((*it)->getId(),
7 simTime() + m_TransformDelay);
8 }
9 }

10 ...
11 }

Listing 5.5: Intercepting CAN events arriving at the transform module.

70

5 Concept implementation

For every CAN event arriving at GatewayTransformation, registerSyncTimestamp of the

domain speci�c scheduler is called. As input parameter the event ID is given. The second

parameter denotes, at what time the scheduler is supposed to expect an external event being

generated from the currently received event. Therefore, the static transform delay of 40 µs is

added to the current time.

As a result, the domain speci�c scheduler now has a number of timestamps inside its priority

queue as shown in Figure 5.7. In this particular example, the priority queue contains just

FES t

Prio. Queue t
40us 40us

Figure 5.7: Example of the FES and priority queue in Partition 1 with calling registerSync-

Timestamp inside GatewayTransformation::handleMessage. Actual CAN events

inside the FES that reach the transform module are highlighted in red.

two timestamps, whereas the FES contains thirteen events. In conclusion the amount of

synchronization cycles required by Partition 1 is reduced. This is the exact behaviour that is

corresponding to the concept de�nition in section 4.2.4.2.

However, at the current state of the implementation, timing violations occur. This is, because

there is a variable delay inside the event pipeline, which adds further delay to all events (see

Figure 5.6). Therefore, it is required to tell the domain speci�c scheduler the time at which the

external event �nally leaves the partition. This is realized inside the Ether Mac FullDuplex

module as shown in Listing 5.6.

1 void EtherMACFullDuplex::handleSelfMessage(cMessage *msg)
2 {
3 ...
4 if (msg->getKind() == ENDTRANSMISSION) {
5 cEndTxMessage* pEndTxMsg = (cEndTxMessage*) msg;
6 if (m_pScheduler) {
7 if (cSimulation::getActiveEnvir()->getParsimProcId() == 0) {
8 m_pScheduler->finishSyncTimestamp(pEndTxMsg->m_MsgId);
9 }

10 }

71

5 Concept implementation

11 ...
12 }

Listing 5.6: Intercepting CAN events arriving at the transform module.

Whenever the transmission of an event is �nished, EtherMACFullDuplex::handleSelfMessage

is called and the transmitted event is passed as parameter. The scheduler is called with

�nishSyncTimestamp and the event ID is passed as parameter. Now the scheduler knows, that

the event transmission is �nished and it can remove the event from the priority queue.

One problem left is that while passing the CAN event pipeline, the event will change its

event ID several times. This is because the event is either copied, destroyed and recreated or

encapsulated in some other event. For this reason the scheduler can not correlate the event

ID passed in Listing 5.6 with any event IDs inside its priority queue. In order to enable the

scheduler to do so, it is required to inform the scheduler about every change of the event ID.

One particular example where the event ID gets changed is the Bu�er module that is in front of

the transform module. This module is partly realized in class RCBu�er. Whenever this bu�er

sends an event, it sends a duplicate of the original event. The duplicate however, has a new

event ID. Therefore, RCBu�er::handleMessage is slightly changed in order to let the scheduler

know about the ID change. This is shown in Listing 5.7.

1 void RCBuffer::handleMessage(cMessage *msg)
2 {
3 ...
4 if (EtherFrame *outgoingMessage = getFrame()) {
5 ...
6 EtherFrame* pDup = outgoingMessage->dup();
7 if (m_pScheduler) {
8 m_pScheduler->updateSyncId(outgoingMessage->getId(),
9 pDup->getId());

10 }
11 ...
12 }
13 ...
14 }

Listing 5.7: Reporting event ID changes to the scheduler.

72

6 Test

This chapter presents the performance and test results of the three scheduling strategies

developed in this work. Section 6.1 presents the general veri�cation of operation for all three

algorithms. Section 6.2 presents the e�ciency of all three scheduling strategies in regard to null

message reduction. Section 6.3 presents the achieved speedup in regard to the sequential as

well as the null message algorithm. Section 6.4 investigates why the most advance of all three

scheduling strategies, the conditional null message algorithm that is using domain speci�c

knowledge, does not perform as well as presumed.

6.1 Verification of operation

All three scheduling algorithms must be veri�ed for correct operation before used in production

environments. Conducting a formal veri�cation is an expensive process. Therefore, it is decided

to verify correct behaviour of all three scheduling strategies by comparing their output for

equality. For this work the attestation of equal output should be su�cient to say that all three

scheduling strategies perform correctly.

The simulation’s output consists out of three �les per partition. A vector �le with *.vec

�le ending, and two data �les with *.sca and *.vci �le ending. The output of the null message

algorithm that comes with OMNET++ and should be approved su�ciently is compared to the

output of the three scheduling strategies developed in this work. All output �les proved to be

identical with minor di�erences consisting of di�erent dates of creation and process numbers.

Furthermore the amount of simulation events that is exchanged between partitions is

compared. It also proved to be identical as shown in Table 6.1 for Simulation 1 and in Table

6.2 for Simulation 2. In conclusion, all three simulation strategies produce identical output

compared to the null message algorithm.

6.2 E�iciency Comparison

The next step in testing is to verify how e�cient the simulation strategies perform in comparison

to the null message algorithm. As stated in section 3.4, the NMA is producing an excessive

73

6 Test

Table 6.1: This Table shows the amount of actual simulation events that are exchanged between

both partitions of Simulation 1, for di�erent simulation runtimes.

Simulation 1 5 sec 10 sec 15 sec 60 sec
NMA 37335 74728 112174 449062

CNMA 37335 74728 112174 449062

AdvCNMA 37335 74728 112174 449062

DspAdvCNMA 37335 74728 112174 449062

Table 6.2: This Table shows the amount of actual simulation events that are exchanged between

both partitions of Simulation 2, for di�erent simulation runtimes.

Simulation 2 5 sec 10 sec 15 sec 60 sec
NMA 62205 124500 186854 747936

CNMA 62205 124500 186854 747936

AdvCNMA 62205 124500 186854 747936

amount of null messages for synchronization purposes. Therefore, a major target of this work

is to develop simulation strategies that reduce the amount of null messages. Table 3.11 shows

Table 6.3: Amount of total null messages sent to simulate 5 s of time.

Simulation 1 Reduction Simulation 2 Reduction
NMA 99990702 99989140

CNMA 665692 150 756766 132

AdvCNMA 488454 204 477622 209

DspAdvCNMA 488190 204 N/A N/A

the total amount of null messages generated in Simulation 1 and Simulation 2 in order to

simulate 5 s of time. All newly developed simulation strategies manage to reduce the amount

of null messages by a factor greater hundred. Therefore, the CNMA proves to be e�ective

for this kind of simulations. The results also show a drawback with the domain speci�c

approach. Although the advanced conditional null message algorithm with domain speci�c

knowledge (see section 4.2.4) generates a slightly smaller amount of null messages compared

to the advanced conditional null message algorithm. However, the reduction is neglect able

and the average reduction factor computes to 204. This is an odd result, since the exploitation

of domain speci�c knowledge is supposed to further reduce the amount of null messages

generated. The reason for this lack in null message reduction is investigated in section 6.4.

In conclusion, all three scheduling strategies manage to keep the amount of required synchro-

nization messages way below the amount of actual simulation messages. This is an indicator

74

6 Test

for a scheduling algorithm’s e�ciency as described at the empirical analysis in section 3.3.2

and by the e�ciency criterion in section 3.3.1.1. Table 6.4 shows the amount of null messages,

simulation events and external events generated for each partition of Simulation 1 per schedul-

ing strategy. The simulated time was 5 s. The measured values are now used to calculate the

Table 6.4: Simulation 1 amount of simulation events, external events and null messages for

Partition 1 and Partition 2 measured for a period of time 5 s.

Partition 1 Partition 2
Events Ext. Events Null Msgs. Events Ext. Events Null Msgs.

NMA 1106758 12336 49995081 1039732 24999 99990702

CNMA 1106758 12336 332846 1039732 24999 332846

AdvCNMA 1106758 12336 244227 1039732 24999 244227

DspAdvCNMA 1106758 12336 244095 1039732 24999 244095

ratios between internal, external events and null messages. The internal event to null message

ratio is expressed as in equation (6.1).

Rint =
I

N
(6.1)

where

• Rint is the ratio between internal events and null messages.

• I is the total amount of internal events;

• N is the total amount of null messages.

The external event to null message ratio is expressed as in equation (6.2).

Rext =
E

N
(6.2)

where

• Rext is the ratio between external events and null messages.

• E is the total amount of external events;

The calculated ratios for Simulation 1 are shown in Table 6.5. Rint shows, that all three

scheduling strategies process an average of three to four internal events per null message,

whereas the null message algorithm processes just one internal event every hundred null

messages. From this point of view the new scheduling strategies prove superior over the

75

6 Test

Table 6.5: This Table shows the ratio between internal events and null messages (Rint) and

between external events and null messages (Rext).

Rint Rext

NMA 0.01431129 0.000248924

CNMA 3.224449145 0.056084496

AdvCNMA 4.394456796 0.076435038

DspAdvCNMA 4.3968332 0.076476372

null message algorithm. Rext however, shows that all three strategies still have room for

improvement. In an ideal situation, the amount of null messages almost equals the amount of

external messages. This would result in Rext = 1.0. This shows that all three strategies have a

theoretical potential for improvement by a factor in the range of 14 to 20. However, with an

Rext between 0.05 and 0.07 they prove again far superior than the null message algorithm.

The results for Simulation 2 in Tables 6.6 and 6.7 further support this statement.

Table 6.6: Simulation 2 amount of simulation events, external events and null messages for

Partition 1 and Partition 2 measured for a period of time 5 s.

Partition 1 Partition 2
Events Ext. Events Null Msgs. Events Ext. Events Null Msgs.

NMA 1229767 16402 49998288 1466154 45803 49990852

CNMA 1229767 16402 378383 1466154 45803 378383

AdvCNMA 1229767 16402 238811 1466154 45803 238811

Table 6.7: This Table shows the ratio between internal events and null messages (Rint) and

between external events and null messages (Rext).

Rint Rext

NMA 0.026962138 0.000622118

CNMA 3.562423523 0.08219846

AdvCNMA 5.644465707 0.130238976

76

6 Test

6.3 Speedup Comparison

This section presents the achieved speed up that is reached by all three scheduling strategies

in comparison to the sequential as well as the null message algorithm scheduler. Speedup in

runtime is de�ned by formula (6.3).

Sruntime =
TS1
TS2

(6.3)

where

• Sruntime is the speedup in runtime of scheduler 2 with respect to scheduler 1.

• TS1 is the runtime of scheduler 1;

• SS2 is the runtime of scheduler 2.

The amount of null messages is reduced by a large amount by all three simulation strategies

as shown in section 6.2. However, the speedup is not proportional to the amount of null

messages. This is because the new scheduling strategies require some additional processing

power. Another reason is that a null message requires much less processing power relative to

an ordinary simulation event. Table 6.8 shows the total runtimes of Simulation 1. Table 6.9

Table 6.8: Total runtimes of Simulation 1 for di�erent simulation runtimes and the di�erent

scheduling strategies. Green indicates runtimes smaller than the sequential counter-

part, red indicates runtimes bigger than the sequential counterpart.

5s 10s 15s 60s
Sequential 22,92 47,562 71,519 287,689

NMA 146,036 303,314 595,967 1960,704

CNMA 20,975 44,151 84,954 268,918

AdvCNMA 21,234 42,585 64,448 261,658

DspAdvCNMA 22,162 44,623 67,258 272,466

shows the average speedup against the sequential and the null message algorithm, calculated

according to equation (6.3). For simulation the speedup is shown in Table 6.10. However,

Simulation 2 lacks the results for the domain speci�c approach, since it is only speci�cally

implemented for Simulation 1
1
. The newly developed scheduling strategies manage to reduce

the simulation runtime in both simulations. In Simulation 2 they manage to be faster than

the null message algorithm by a factor of �ve. In Simulation 1 they are around seven times

1

All the underlying measurement data can be found in Performance-Measurements.xlsx

77

6 Test

Table 6.9: Speedup of Simulation 1 by the newly developed scheduling strategies against the

sequential and the null message algorithm scheduler.

Average Speedup Sequential NMA
CNMA 1.07699253 7.506133389

AdvCNMA 1.10136857 7.685163415

DspAdvCNMA 1.05482246 7.360946287

Table 6.10: Speedup of Simulation 2 by the newly developed scheduling strategies against the

sequential and the null message algorithm scheduler.

Average Speedup Sequential NMA
CNMA 1,10878881 5,277738271

AdvCNMA 1,09281726 5,208379756

faster than the null message algorithm. However, they do not perform that well against the

sequential algorithm. All newly developed algorithms are slightly faster than the sequential

algorithm. However, they just achieve an increase in performance by an average of �ve to ten

percent.

6.4 Why the domain specific approach lacks in performance

The technically most advanced scheduling strategy which is using domain speci�c knowledge

does not show the desired performance bene�ts. Actually, its performance arranges somewhere

between the conditional null message algorithm from section 4.1.2 and the advanced conditional

null message algorithm from section 4.1.4. This section presents the reason for this lack in

performance.

The main idea of using domain speci�c knowledge is to reduce the amount of synchronization.

This is done by ignoring all those events inside the partition’s FES that will not create any

external events. However, exploiting domain speci�c knowledge is only implemented in

Partition 1 of Simulation 1 as described in section 5.3. Therefore, it ignores all events inside the

FES for synchronization and just uses the events inside the priority queue. However, Partition

2 does not possess any domain speci�c knowledge. Therefore, the scheduler falls back to

using the event inside its FES for synchronization. This leads to the situation that is shown

in Figure 6.1. While Partition 1 is aware of the fact which events will create external events

and therefore, could advance way ahead in time, Partition 2 does not. Without any domain

speci�c knowledge it must result on all events inside its FES. Therefore, it can only advance in

simulation time in intervals the size of the lookahead between both partitions.

78

6 Test

Simulation 1
FES t

Prio. Queue t
Static delay 40us

Simulation 2
FES t

Lookahead 200ns

Synchronisation point

Figure 6.1: Example of the synchronization between Partition 1 with domain speci�c knowledge

and Partition 2 without domain speci�c knowledge.

This insight leads to the conclusion that in order to make e�cient use of domain speci�c

knowledge, it must be implemented in every partition. Furthermore, in order to bene�t from

parallelism in the best way possible, all partitions should determine the same points in time

for synchronization if possible. The more these synchronization points are displaced, the more

synchronization takes place and less parallelism is achieved. An example is shown in Figure

6.2. The left half of the Figure shows displaced synchronization points. That means events that

Simulation 1
Prio. Queue t

Simulation 2
Prio. Queue t

Synchronisation point

Displaced synchronization Parallel synchronization

Figure 6.2: Example for displaced and optimal synchronization.

might create external events are scheduled at di�erent points in simulation time for Partition 1

and Partition 2. This leads to an increased amount of synchronization cycles as can be seen by

the red lines. The right half of the Figure shows parallel synchronization points. That means

events that might create external events are scheduled at the same points in simulation time

for Partition 1 and Partition 2. This leads to an decreased amount of synchronization cycles

and an increase in parallelism.

79

7 Final

7.1 Summary

This master thesis describes the evaluation based design and development of parallel simulation

strategies for in vehicle networks.

The �rst step consisted in gathering and presenting the necessary theoretical foundations of

parallel simulation. These are described in chapter 2. A de�nition of simulation is given in

section 2.1. The di�erent classi�cations are described in section 2.2. The existing in vehicle

network simulations were classi�ed as classic discrete event based simulations. The basic

concepts of parallel discrete event based simulations were developed next. They are presented

in sections 2.4 and 2.4. The next step consisted in gathering the required knowledge about

synchronization in section 2.6 and the basic di�erences about conservative and optimistic

parallel simulations in sections 2.7 and 2.8. The most common and successful approaches to

optimize these algorithms, were researched in a thorough literature research of more than �fty

scienti�c publications about parallel simulation. The optimization approaches for optimistic

simulation strategies are presented in section 2.7.4, those for conservative simulation strategies

in section 2.8.2. Finally, a brief overview on time triggered ethernet is given in section 2.9.

Chapter 3 is devoted to a thorough problem analysis. The major goal was to get a basic

understanding of the nature of in vehicle network simulations. Therefore, two typical sim-

ulations of the CoRE group were chosen for further investigation. Section 3.1 presents the

simulation model of both simulations and explains the basic architecture. It is followed by

a data �ow analysis in section 3.2. The results of the data �ow analysis were supposed to

support the decision for a basic simulation strategy to continue with. Before starting with the

concept development, the parallel potential of Simulation 1 and Simulation 2 was investigated

in section 3.3. The parallel potential was analytically calculated in section 3.3.1. The results got

empirically veri�ed using the optimum eventlog based scheduler with zero synchronization

overhead in section 3.3.2. Based on the analysis results and the theoretical evaluation of

the available scheduling strategies, presented in section 2.8, the most promising approach is

80

7 Final

identi�ed in section 3.4. This approach was then selected as foundation for the evaluation

based design of the parallel simulation strategies for in vehicle networks.

After coming to the conclusion that both simulations o�er a su�cient enough parallel

potential in section 3.4, the concept work was started with chapter 4. It was decided to split

the concept development into a generic part in section 4.1 and a domain speci�c part in section

4.2. The generic scheduling strategy is supposed to work out of the box with all kinds of

simulations, without further modi�cations. In contrast to the generic strategy, the domain

speci�c scheduling strategy does not work out of the box. It is based on domain speci�c

knowledge about the simulation’s internals in order to optimize the amount of necessary

synchronization. The advantage of this approach is that the generic scheduling strategies do

not require modi�cations of existing simulations. If they prove successful, they could be used

immediately. Therefore, the �nal concepts consist out of the original conditional null message

algorithm which is described in section 4.1.2, an advanced conditional null message algorithm

with additional optimization as described in section 4.1.4 and a domain speci�c scheduler that

is based on the conditional null message algorithm in section 4.2.

After �nishing the concept phase for all three scheduling algorithms, the implementation

phase started in chapter 5. A brief introduction to the OMNET++ parallel simulation subsystem

is given in section 5.1. It is followed by the implementation details of the generic scheduling

strategy in section 5.2. The implementation of the basic conditional null message algorithm

is explained in section 5.2.1. Section 5.2.2 gives an insight on lookahead calculation and how

it is realized as part of the new scheduling strategy. The advanced conditional null message

algorithm that was developed in section 4.1.3 and 4.1.4, is described in section 5.2.4. Section 5.3

describes the implementation of the domain speci�c approach. It starts with an analyzation of

the TTE event pipeline in section 5.3.1, followed by an analyzation of the CAN event pipeline

in section 5.3.2. Based on the decision it was decided to exploit domain speci�c knowledge in

the CAN event pipeline only. This decision was based on the fact, that the implementation

takes a considerable amount of e�ort and requires to change existing code.

After a successful implementation, the test phase started. The results are presented in

chapter 6. Section 6.1 explains how the correct operation of all three scheduling strategies was

veri�ed. An e�ciency comparison of all three scheduling strategies and the sequential and

null message algorithm is presented in section 6.2. A presentation of the achieved speedup

is given in section 6.3. All three scheduling strategies proved to be signi�cantly faster than

the already existing null message algorithm. However, the domain speci�c approach did not

ful�l the expectations in regard to e�ciency and speedup. The cause was investigated and the

81

7 Final

reasons are presented in section 6.4. The theoretical maximum speedup that was empirically

evaluated in section 3.3.2, was not reached by all three scheduling strategies.

7.2 Conclusion

The evaluation based design of parallel simulation strategies for in vehicle networks has been

�nished successfully.

The thorough analysis of the two underlying in vehicle network simulations was performed

in order to get a thorough understanding of the simulation’s behaviour. The e�ciency criterion

from [26] was applied successfully in order to estimate both simulation’s parallel potential.

The results promised parallel potential in both cases. A veri�cation of these results was done

by an empirical analysis with the eventlog based scheduler from [7].

Based on the analysis results, it was decided to use the conditional null message algorithm

as a starting point to develop parallel simulation strategies. This decision proved successful by

the following test results.

The �rst scheduling strategy, the conditional null message algorithm, proved to be way more

e�cient than the original null message algorithm. The amount of null messages was reduced

by an average factor in between 130 to 150, in comparison to the null message algorithm. The

speedup was around 700 percent in regard to the null message algorithm and around seven

to ten percent in regard to the sequential algorithm. These results were surpassed by the

second scheduling strategy. The advanced conditional null message algorithm managed to

reduce the amount of necessary null messages by an average factor of 200, in regard to the null

message algorithm. The achieved speedup was around 500 to 700 percent in regard to the null

message algorithm and around nine to ten percent in regard to the sequential algorithm. The

third scheduling strategy was using domain speci�c knowledge in order to further optimize

runtimes. However, it did not prove as successful as desired. Its performance was similar to

that of the other two scheduling strategies. At least from a theoretical point of view, it was

supposed to be the fastest. An analysis showed that the third scheduling strategy su�ered

from the fact, that the domain speci�c part was just implemented for the CAN event partition.

All three scheduling strategies developed as part of this work proved far superior than the

null message algorithm. They proved as well faster than their sequential counterpart. However,

the speedup that was promised by the empirical analysis in section 3.3.2.2 was not reached.

The intensive use of domain speci�c knowledge might improve these results. However, one

must consider, that the analytical as well as the empirical analysis always assumed optimal

conditions.

82

7 Final

In conclusion, all three scheduling strategies form a solid foundation for further investigation

on parallel simulation for in vehicle networks. Considering the empirical analysis, it seems

safe to say that the maximum parallel potential is not yet reached. A big advantage is that two

out of three scheduling strategies can be used out of the box. Therefore, it is not necessary to

modify existing simulation code in order to take advantage of parallel simulation. A further

advantage is that users do not need to obtain special knowledge on parallel simulation in

order to use these schedulers. However, as soon as domain speci�c knowledge shall be used to

further improve simulation times, a thorough understanding of parallel simulation is essential.

Finally, this work proved that the conditional null message algorithm and its variations are

capable to speedup the two investigated vehicle simulations. This statement should be valid

for all in vehicle simulations similar to those that were investigated in this work.

7.3 Outlook

This section gives a brief outlook on possible future work.

The scheduling strategy that is using domain speci�c knowledge did not perform as desired.

Therefore, further investigations should be made in order to evaluate the full potential of using

domain speci�c knowledge. In a �rst step one could implement the exploitation of domain

speci�c knowledge for the TTE Partition. However, this step requires some e�ort and will

result in modi�cations to a lot of existing code. A lot of those modules that need to be modi�ed

will as well be used in the CAN partition. Therefore, the modi�cations must be partition based.

They must not be enabled for the CAN partition.

Dependent on the results, a second step would try to come up with a general concept on how

to exploit and implement the usage of domain speci�c knowledge about a simulation’s internals.

This work again requires some e�ort and in depth knowledge about parallel simulation.

Another possibility is to take a look into optimistic scheduling strategies. However, this

direction requires even more changes to existing code and should only be considered after

maxing out the conservative scheduling strategies.

83

Bibliography

[1] T. Nolte, H. Hansson, and L.L. Bello. Automotive communications-past, current and future.

2005 IEEE Conference on Emerging Technologies and Factory Automation, 1:985–992, 2005.

[2] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert. Trends in Automotive Communication

Systems. Proceedings of the IEEE, 93(6):1204–1223, jun 2005.

[3] Paolo Giusto, Alberto Ferrari, Luciano Lavagno, and Alberto Sangiovanni-vincentelli.

Automotive Virtual Integration Platforms : Why ’ s , What ’ s , and How ’ s Cadence

Design Systems. 2002.

[4] Georg Kunz, Mirko Sto�ers, James Gross, Klaus Wehrle, Olaf Landsiedel, Stefan Goetz, and

Farshad Naghibi. Expanding the Event Horizon in Parallelized Network Simulations. In

Modeling, Analysis Simulation of Computer and Telecommunication Systems (MASCOTS),

2010 IEEE International Symposium on, pages 172–181, 2010.

[5] Georg Kunz, Mirko Sto�ers, James Gross, and Klaus Wehrle. Runtime e�cient event

scheduling in multi-threaded network simulation. In Proceedings of the 4th Interna-

tional ICST Conference on Simulation Tools and Techniques, SIMUTools ’11, pages 359–366,

ICST, Brussels, Belgium, Belgium, 2011. ICST (Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering).

[6] SY Wang and CC Lin. Exploiting event-level parallelism for parallel network simulation

on multicore systems. . . . Distributed Systems, . . . , 23(4):659–667, 2012.

[7] Jan Raddatz, Franz Korf, and Till Steinbach. Determining the Optimization Potential of

Conservatively Scheduled Parallel Simulations. CoRE Group @ HAW Hamburg, 2015.

[8] R. M. Fujimoto. Parallel discrete event simulation. Commun. ACM, 33(10):30–53, 1990.

[9] John S Carson and Jerry Banks. Introduction to Discrete-Event Simulation. Simulation,

1986.

84

Bibliography

[10] Friedemann Mattern and Horst Mehl. Diskrete Simulation – Prinzipien und Probleme

der E�zienzsteigerung durch Parallelisierung. Informatik-Spektrum, 12(4):198–210, 1989.

[11] R. M. Fujimoto. Feature Article–Parallel Discrete Event Simulation: Will the Field Survive?

INFORMS Journal on Computing, 5(3):213–230, 1993.

[12] R. M. Fujimoto. Parallel and Distributed Simulation Systems. the 31st conference onWinter

simulation: Simulation, pages 147–157, 1999.

[13] Alois Ferscha and S K Tripathi. Parallel and distributed simulation of discrete event

systems. Event London, pages 1–65, 1998.

[14] R M Fujimoto. Distributed simulation systems. In Simulation Conference, 2003. Proceedings

of the 2003 Winter, volume 1, pages 124–134 Vol.1, 2003.

[15] K S Perumalla. Parallel and Distributed Simulation: Traditional Techniques and Recent

Advances. In Simulation Conference, 2006. WSC 06. Proceedings of the Winter, pages 84–95,

2006.

[16] Shafagh Jafer, Qi Liu, and Gabriel Wainer. Synchronization methods in parallel and

distributed discrete-event simulation. Simulation Modelling Practice and Theory, 30:54–

73, 2013.

[17] Jerry. Banks, John S Carson, and Barry L Nelson. Discrete-event system simulation. Prentice

Hall, 1999.

[18] Tang Wenjie and Yiping Yao. HSK: A Hierarchical Parallel Simulation Kernel for Multicore

Platform. In Parallel and Distributed Processing with Applications (ISPA), 2011 IEEE 9th

International Symposium on, pages 19–24, 2011.

[19] Rajive L. Bagrodia and Mineo Takai. Performance evaluation of conservative algorithms

in parallel simulation languages. IEEE Transactions on Parallel and Distributed Systems,

11(4):395–411, 2000.

[20] Parallel Discrete and Event Simulation. An Algorithm For Reducing Null-Messages of

CMB Approach in Parallel Discrete Event Simulation. Technical report, 1990.

[21] D Je�erson and H Sowizral. Fast Concurrent Simulation Using the Time Warp Mechanism.

Part I. Local Control. Technical Report ADA129431, Rand Santa Monica, 1982.

85

Bibliography

[22] D Je�erson. Virtual time. ACM Transactions on Programming Languages and . . . , 7(3):404–

425, 1985.

[23] J S Steinman. SPEEDES - A multiple-synchronization environment for parallel discrete-

event simulation. International Journal in Computer Simulation; (United States), 2, jan

1992.

[24] Yaocheng Zhang and Ge Li. SafeBTW: A Scalable Optimistic Yet Non-risky Synchro-

nization Algorithm. 2012 ACM/IEEE/SCS 26th Workshop on Principles of Advanced and

Distributed Simulation, pages 75–77, jul 2012.

[25] Seng Chuan Tay Seng Chuan Tay, Yong Meng Teo Yong Meng Teo, and Rassul Ayani Ras-

sul Ayani. Performance analysis of Time Warp simulation with cascading rollbacks.

Proceedings. Twelfth Workshop on Parallel and Distributed Simulation PADS ’98 (Cat.

No.98TB100233), 1998.

[26] A Varga, Sekercioglu, and G K Egan. A practical e�ciency criterion for the Null Mes-

sage Algorithm. In Simulation in Industry: Proceedings of the 15th European Simulation

Symposium (ESS 2003), 2003.

[27] C H Young and P A Wilsey. Optimistic fossil collection for time warp simulation. In

System Sciences, 1996., Proceedings of the Twenty-Ninth Hawaii International Conference

on ,, volume 1, pages 364–372 vol.1, jan 1996.

[28] Christoper H Young, Radharamanan Radhakrishnan, and Philip A Wilsey. Optimism: Not

Just for Event Execution Anymore. In Proceedings of the Thirteenth Workshop on Parallel

and Distributed Simulation, PADS ’99, pages 136–143, Washington, DC, USA, 1999. IEEE

Computer Society.

[29] M Chetlur and P A Wilsey. Causality Information and Fossil Collection in Time Warp

Simulations. In Simulation Conference, 2006. WSC 06. Proceedings of the Winter, pages

987–994, 2006.

[30] Voon-Yee Vee and Wen-Jing Hsu. Pal:a new fossil ollector for time warp. In Parallel and

Distributed Simulation, 2002. Proceedings. 16th Workshop on, pages 31–38, 2002.

[31] David Je�erson. Virtual Time II: Storage Management in Conservative and Optimistic

Systems. In Proceedings of the Ninth Annual ACM Symposium on Principles of Distributed

Computing, PODC ’90, pages 75–89, New York, NY, USA, 1990. ACM.

86

Bibliography

[32] Yi-Bing Lin and Bruno R Preiss. Optimal Memory Management for Time Warp Parallel

Simulation. ACM Trans. Model. Comput. Simul., 1(4):283–307, 1991.

[33] B R Preiss and W M Loucks. Memory management techniques for time warp on a

distributed memory machine. In Parallel and Distributed Simulation, 1995. (PADS’95),

Proceedings., Ninth Workshop on (Cat. No.95TB8096), pages 30–39, jun 1995.

[34] Avinash C Palaniswamy and Philip A Wilsey. An Analytical Comparison of Periodic

Checkpointing and Incremental State Saving. SIGSIM Simul. Dig., 23(1):127–134, 1993.

[35] Yi-Bing Lin, Bruno R Preiss, Wayne M Loucks, and Edward D Lazowska. Selecting the

Checkpoint Interval in Time Warp Simulation. In Proceedings of the Seventh Workshop

on Parallel and Distributed Simulation, PADS ’93, pages 3–10, New York, NY, USA, 1993.

ACM.

[36] Lisa M Sokol and Brian K Stucky. MTW: Experimental Results for a Constrained Optimistic

Scheduling Paradigm. In David Nicol, editor, Distributed {S}imulation, volume 22 of

Simulation, pages 169–173. Society for Computer Simulation (SCS), San Diego, CA, 1990.

[37] R Rajan and P A Wilsey. Dynamically switching between lazy and aggressive cancellation

in a Time Warp parallel simulator. In Simulation Symposium, 1995., Proceedings of the

28th Annual, pages 22–30, apr 1995.

[38] Christopher D Carothers, Kalyan S Perumalla, and Richard M Fujimoto. E�cient Op-

timistic Parallel Simulations Using Reverse Computation. ACM Trans. Model. Comput.

Simul., 9(3):224–253, 1999.

[39] Samir R Das and Richard M Fujimoto. A Performance Study of the Cancelback Protocol

for Time Warp. SIGSIM Simul. Dig., 23(1):135–142, 1993.

[40] Ian F Akyildiz, Liang Chen, Samir Ranjan Das, Richard Fujimoto, and Richard F Serfozo.

Performance Analysis of "Time Warp" with Limited Memory. Sigmetrics, 20(1):213–224,

1992.

[41] Bruno R. Preiss, Ian D. MacIntyre, and Wayne M. Loucks. On the Trade-o� between Time

and Space in Optimistic Parallel Discrete-Event Simulation. Computer Engineering, (c),

1992.

[42] S.R. Das and R.M. Fujimoto. An empirical evaluation of performance-memory trade-o�s

in time warp. IEEE Transactions on Parallel and Distributed Systems, 8(2):210–224, 1997.

87

Bibliography

[43] R E Bryant. Simulation of Packet Communication Architecture Computer Systems, 1977.

[44] K M Chandy and J Misra. Distributed Simulation: A Case Study in Design and Veri�cation

of Distributed Programs. Software Engineering, IEEE Transactions on, SE-5(5):440–452,

sep 1979.

[45] David Nicol and Richard Fujimoto. Parallel simulation today. Annals of Operations

Research, 53(1):249–285, 1994.

[46] R.a. Meyer and R.L. Bagrodia. Path lookahead: a data �ow view of PDES models.

Proceedings Thirteenth Workshop on Parallel and Distributed Simulation. PADS 99. (Cat.

No.PR00155), 1999.

[47] K M Chandy and R. Sherman. The conditional-event approach to distributed simulation.

Contract, (June), 1989.

[48] Kenneth R. Wood and Stephen J. Turner. A generalized carrier-null method for conserva-

tive parallel simulation. ACM SIGSIM Simulation Digest, 24(1):50–57, 1994.

[49] T.D. Blanchardt, T.W. Laket, and S.J. Turner. Cooperative distributed Acceleration : discrete

robust event conservative simulation. ACM SIGSIM Simulation Digest, 24(1):58–64, 1994.

[50] B. D. Lubachevsky. E�cient distributed event-driven simulations of multiple-loop net-

works. Communications of the ACM, 32(1):111–123, 1989.

[51] L.M. Sokol, J.B. Weissman, and P.a. Mutchler. MTW: an empirical performance study.

1991 Winter Simulation Conference Proceedings., 1991.

[52] Bruno R Preiss, Wayne M Loucks, Ian D Macintyre, and James a Field. Null Message Can-

cellation in Conservative Distributed Simulation Department of Electrical and Computer

Engineering University of Waterloo Waterloo , Ontario , Canada , N2L 3G1. Time, (c):1–6,

1991.

[53] Paul F. Reynolds. A shared resource algorithm for distributed simulation. ACM SIGARCH

Computer Architecture News, 10(3):259–266, 1982.

[54] Jayadev Misra. Distributed discrete-event simulation. ACM Computing Surveys, 18(1):39–

65, 1986.

[55] J Kent Peacock, Johnny W Wong, and Eric G Manning. Synchronization of Distributed

Simulation Using Broadcast Algorithms. Computer Networks, 4:3–10, 1980.

88

Bibliography

[56] R.a. Meyer and R.L. Bagrodia. Improving lookahead in parallel wireless network simu-

lation. Proceedings. Sixth International Symposium on Modeling, Analysis and Simulation

of Computer and Telecommunication Systems (Cat. No.98TB100247), 1998.

[57] Moo Kyoung Chung and Chong Min Kyung. Improving lookahead in parallel multipro-

cessor simulation using dynamic execution path prediction. Proceedings - Workshop on

Principles of Advanced and Distributed Simulation, PADS, 2006:11–18, 2006.

[58] Zhenjiang Dong, Jun Wang, George F. Riley, and Sudhakar Yalamanchili. A study of the

e�ect of partitioning on parallel simulation of multicore systems. Proceedings - IEEE Com-

puter Society’s Annual International Symposium on Modeling, Analysis, and Simulation of

Computer and Telecommunications Systems, MASCOTS, pages 375–379, 2013.

[59] Cheng-Hong Li, Alfred J. Park, and Eugen Schenfeld. Analytical Performance Mod-

eling for Null Message-Based Parallel Discrete Event Simulation. 2011 IEEE 19th An-

nual International Symposium on Modelling, Analysis, and Simulation of Computer and

Telecommunication Systems, pages 349–358, 2011.

[60] Amos Albert. Comparison of event-triggered and time-triggered concepts with regard to

distributed control systems. Embedded World, pages 235–252, 2004.

[61] W. Su. Variants of the Chandy-Misra-Bryant distributed discrete-event simulation algo-

rithm. Technical report, 1988.

[62] A. Varga, Y. A. Sekercioglu, and G. K. Egan. Estimate the Parallel Potential of Your Model,

2007.

[63] Ahmet Y Sekercioglu, Andras Varga, and Gregory K Egan. Parallel Simulation Made

Easy with OMNeT++. In Proceedings of the European Simulation Symposium, Delft, The

Netherlands, 2003.

89

Glossary

Causality violation is the execution of an event out of time correct order.

DES discrete event based simulation.

Event is a discrete point in time of a simulation, associated with a change of state of its model.

Event scheduler is an algorithm responsible for processing events in time correct order.

External event is an event created by one partition, sent to another partition and processed

by that partition.

FES is the future event set that stores events in time correct order.

Internal event is an event created by one partition and processed by the same partition.

IPC is interprocess communication and allows message exchange between processes.

Model represents the behaviour and functions of the simulated systems relevant key features.

NMA is the null message algorithm which is a conservative synchronization algorithm (see

section 2.8.1).

Null message is a special event that is used to prevent deadlocks in NMA.

Partition is one part of a partitioned model.

Partitioning is the process of splitting a model into separate partitions.

PDES parallel discrete event based simulation.

Processing unit can be a central processing unit (cpu) or a single core of a multi-core pro-

cessor.

90

Glossary

Real time is the real time domain or in other words the real time passed for a user for running

a simulation.

Simulation according to [17], is the imitation of the operation of a real-world process or

system over time.

Simulation system is a software o�ering the necessary functionality to run a simulation on

a model over time.

Simulation time is the simulations time domain.

System is a real world system or process that will be simulated. Common examples are

networks, motors etc..

.

91

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig verfasst und

nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, 2. Februar 2016 Jan Raddatz

	1 Introduction
	2 Theoretical foundations and related work
	2.1 Simulation
	2.2 Classifications
	2.3 Time in simulation
	2.4 Discrete event based simulation
	2.5 Parallel discrete event based simulation
	2.5.1 Basic idea behind PDES
	2.5.2 Challenges in PDES

	2.6 Synchronization
	2.7 Optimistic Algorithms
	2.7.1 Time Warp Algorithm
	2.7.2 Time warp implementation
	2.7.3 Global virtual time
	2.7.4 Optimization of optimistic algorithms
	2.7.4.1 Reducing memory footprint
	2.7.4.2 Preventing overly optimistic execution
	2.7.4.3 Improved cancellation

	2.7.5 Performance estimation of optimistic algorithms

	2.8 Conservative Algorithms
	2.8.1 Null Message Algorithm
	2.8.2 Optimization of conservative algorithms
	2.8.2.1 Conditional null message
	2.8.2.2 Carrier null message
	2.8.2.3 Conservative time windows
	2.8.2.4 Null message cancellation
	2.8.2.5 Demand driven
	2.8.2.6 Path lookahead

	2.8.3 Performance estimation of conservative algorithms

	2.9 Time-Triggered Ethernet
	2.9.1 Communication protocols
	2.9.1.1 Deterministic Time-Triggered (TT) traffic
	2.9.1.2 Event-Driven or rate-constrained (RC) traffic
	2.9.1.3 Best-effort (BE) traffic

	2.9.2 Common time base

	3 Problem Analysis
	3.1 Simulation model
	3.2 Dataflow analysis
	3.2.1 Cyclic message traffic
	3.2.2 Rate constrained message traffic
	3.2.3 Time triggered message traffic
	3.2.4 Best effort message traffic

	3.3 Parallel potential analysis
	3.3.1 Analytical analysis
	3.3.1.1 The efficiency criterion
	3.3.1.2 Applying the efficiency criterion

	3.3.2 Empirical analysis
	3.3.2.1 Choosing a partitioning strategy
	3.3.2.2 Parallel potential measurement

	3.4 Analysis conclusion

	4 Optimization concept
	4.1 Generic optimization
	4.1.1 Scheduling algorithm selection
	4.1.2 Conditional null message algorithm basic approach
	4.1.3 Increasing parallelism
	4.1.4 Final conditional null message algorithm approach
	4.1.4.1 Broadcast earliest internal event
	4.1.4.2 Calculate ECOT Matrix
	4.1.4.3 Calculate min ECOT Array
	4.1.4.4 Calculate phase 2
	4.1.4.5 Final algorithm

	4.2 Domain specific optimization
	4.2.1 Weak point of the generic optimization
	4.2.2 Problem-solving approach
	4.2.3 Basic thoughts towards a generally applicable domain specific scheduling strategy
	4.2.3.1 Asymmetric event generation
	4.2.3.2 Processing delays
	4.2.3.2.1 Fixed processing delays
	4.2.3.2.2 Variable processing delays
	4.2.3.2.3 Keeping track of events

	4.2.4 Final domain specific optimization approach
	4.2.4.1 Scheduler architecture
	4.2.4.2 Obtaining a global view on all possible external events
	4.2.4.3 Event tracking

	5 Concept implementation
	5.1 The OMNET++ parallel simulation subsystem
	5.2 The conditional null message algorithm scheduler
	5.2.1 Basic approach implementation
	5.2.2 Distributed lookahead calculation
	5.2.3 Basic synchronisation
	5.2.4 Increased parallelism implementation

	5.3 Domain specific optimization realization
	5.3.1 The TTE event pipeline
	5.3.2 The CAN event pipeline
	5.3.3 Exploiting the CAN event pipeline
	5.3.4 Implementation of the domain specific approach in Partition 1

	6 Test
	6.1 Verification of operation
	6.2 Efficiency Comparison
	6.3 Speedup Comparison
	6.4 Why the domain specific approach lacks in performance

	7 Final
	7.1 Summary
	7.2 Conclusion
	7.3 Outlook

	Glossary

